Skip to main content
Log in

Effect of Ni Addition to Sn0.7Cu Solder Alloy on Thermal Behavior, Microstructure, and Mechanical Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The addition of Ni on lead-free solder alloys Sn0.7Cu was tested in this study. A small amount of Ni was added to the solder alloys to evaluate the thermal behavior, microstructure, and mechanical properties of the composite solders after sintering and isothermal aging for 3 days and then compared with the results of the binary Sn0.7Cu solder. The results indicated that the ultimate tensile strength and yield tensile strength changed when adding 0.25 wt.% of Ni. The tested results of the differential scanning calorimeter showed that the addition of Ni (such as 0.5 and 1 wt.%) could obviously increase the solidification temperature of Sn0.7Cu alloys in the cooling process. When the Ni content was increased to 0.25 wt.% in the ternary condition, which includes the Sn0.7Cu-xNi (x = 0, 0.1, 0.25, 0.5, and 1 wt.%) solder alloys for the indentation creep test, the minimum creep rate reached the maximum; however, the trend was reversed as the Ni content was higher than this level. In addition, the microstructure of Sn-0.7Cu-xNi solder alloys was obviously different with the eutectic Sn-0.7Cu solder, such that the Ni gradually accumulated in the (Cu, Ni)6Sn5 IMCs within the Ni-containing solder alloys. Additionally, this process refined the microstructure of the Sn-0.7Cu solder. The fracture surface of the eutectic Sn-0.7Cu solder revealed ductile fracture modes; however, there was no mixed ductile–brittle fracture mode occurred when the Ni content was in the range of 0-1 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.H. Chang and S.K. Wu, Damping Characteristics of Sn-3Ag-0.5Cu and Sn-37Pb Solders Studied by Dynamic Mechanical Analysis, Scr. Mater., 2010, 63, p 957–960

    Article  CAS  Google Scholar 

  2. M. He, Z. Chen, and G.J. Qi, Solid State Interfacial Reaction of Sn-37Pb and Sn-3.5Ag Solders with Ni-P Under Bump Metallization, Acta Mater., 2004, 52, p 2047–2056

    Article  CAS  Google Scholar 

  3. A.F. Abd El-Rehim and H.Y. Zahran, Investigation of Microstructure and Mechanical Properties of Sn-xCu Solder Alloys, J. Alloys Compd., 2017, 695, p 3666–3673

    Article  CAS  Google Scholar 

  4. A.A. El-Daly, Y. Swilem, and A.E. Hammad, Creep Properties of Sn-Sb Based Lead-Free Solder Alloys, J. Alloys Comp., 2009, 471, p 98–104

    Article  CAS  Google Scholar 

  5. M.L. Huang, N. Kang, Q. Zhou, and Y.Z. Huang, Effect of Ni Content on Mechanical Properties and Corrosion, Behavior of Al/Sn-9Zn-xNi/Cu Joints, J. Mater. Sci. Technol., 2012, 28, p 844–852

    Article  CAS  Google Scholar 

  6. X.W. Hu, Y.L. Li, and Z.X. Min, Interfacial Reaction and IMC Growth Between Bi-Containing Sn0.7Cu Solders and Cu Substrate During Soldering and Aging, J. Alloys Compd., 2014, 582, p 341–347

    Article  CAS  Google Scholar 

  7. H. Nishikawa and N. Iwata, Formation and Growth of Intermetallic Compound Layers at the Interface During Laser Soldering Using Sn-Ag Cu Solder on a Cu Pad, J. Mater. Process. Technol., 2015, 215, p 6–11

    Article  CAS  Google Scholar 

  8. H. Kang, M. Lee, D. Sun, S. Pae, and J. Park, Formation of Octahedral Corrosion Products in Sn-Ag Flip Chip Solder Bump, Scr. Mater., 2015, 108, p 126–129

    Article  CAS  Google Scholar 

  9. W.Y. Chen, T.C. Chiu, K.L. Lin, and Y.S. Lai, Electrorecrystallization of Intermetallic Compound in the Sn0.7Cu Solder Joint, Intermetallics, 2012, 26, p 40–43

    Article  Google Scholar 

  10. X.W. Hu, Y.L. Li, Y. Liu, and Z.X. Min, Developments of High Strength Bi-Containing Sn0.7Cu Lead-Free Solder Alloys Prepared by Directional Solidification, J. Alloys Compd., 2015, 625, p 241–250

    Article  CAS  Google Scholar 

  11. J.W. Yoon, S.W. Kim, Ja.M. Koo, D.G. Kim, and S.B. Jung, Reliability Investigation and Interfacial Reaction of Ball-Grid-Array Packages Using the Lead-Free Sn-Cu Solder, J. Electron. Microsc., 2004, 33, p 1190–1199

    CAS  Google Scholar 

  12. C.K. Shin, Y.J. Baik, and J.Y. Huh, Effects of Microstructural Evolution and Intermetallic Layer Growth on Shear Strength Of Ball-Grid-Array Sn-Cu Solder Joints, J. Electron. Microsc., 2001, 30, p 1323–1331

    CAS  Google Scholar 

  13. Satyanarayan and K.N. Prabhu, Reactive Wetting, Evolution of Interfacial and Bulk IMCs and Their Effect on Mechanical Properties of Eutectic Sn-Cu Solder Alloy, Adv. Colloid Interface Sci., 2011, 166, p 87–118

    Article  CAS  Google Scholar 

  14. M.I.I. Ramli, N. Saud, M.A.A. MohdSalleh, M.N. Derman, and R. MohdSaid, Effect of TiO2 Additions on Sn-0.7Cu-0.05Ni Lead-Free Composite Solder, Microelectron. Reliab., 2016, 65, p 255–264

    Article  CAS  Google Scholar 

  15. L. Yang, Y.C. Zhang, J. Dai, Y.F. Jing, J.G. Ge, and N. Zhang, Microstructure, Interfacial IMC and Mechanical Properties of Sn-0.7Cu-xAl (x = 0–0.075) Lead-Free Solder Alloy, Mater. Des., 2015, 67, p 209–216

    Article  CAS  Google Scholar 

  16. N. Zhao, M.L. Huang, Y. Zhong, H.T. Ma, and X.M. Pan, Effects of Rare Earth Ce Addition on the Microstructure, Wettability and Interfacial Reactions of Eutectic Sn-0.7Cu Solder, J. Mater. Sci.: Mater. Electron., 2015, 26, p 345–352

    CAS  Google Scholar 

  17. S. Tian, S.P. Li, J. Zhou, and F. Xue, Thermodynamic Characteristics, Microstructure and Mechanical Properties of Sn-0.7Cu-xIn Lead-Free Solder Alloy, J. Alloys Comp., 2018, 742, p 835–843

    Article  CAS  Google Scholar 

  18. F.J. Wang, X. Ma, and Y.Y. Qian, Improvement of Microstructure and Interface Structure of Eutectic Sn-0.7Cu Solder with Small Amount of Zn Addition, Scr. Mater., 2005, 53, p 699–702

    Article  CAS  Google Scholar 

  19. K.S. Kim, S.H. Huh, and K. Suganuma, Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn-Ag-Cu Alloy and Joints with Cu, Microelectron. Reliab., 2003, 43, p 259–267

    Article  CAS  Google Scholar 

  20. Y.Q. Lai, X.W. Hu, Y.L. Li, and X.X. Jiang, Interfacial Microstructure Evolution and Shear Strength of Sn0.7Cu-xNi/Cu Solder Joints, J. Mater. Sci.: Mater. Electron., 2018, 29, p 11314–11324

    CAS  Google Scholar 

  21. C.R. Yang, F.B. Song, and S.W. Ricky Lee, Impact of Ni Concentration on the Intermetallic Compound Formation and Brittle Fracture Strength of Sn-Cu-Ni (SCN) Lead-Free Solder Joints, Microelectron. Reliab., 2014, 54, p 435–446

    Article  CAS  Google Scholar 

  22. P. He, J.H. Zhang, R.L. Zhou, and X.Q. Li, Diffusion Bonding Technology of a Titanium Alloy to a Stainless Steel Web with Ni Interlayer, Mater. Charact., 1999, 43, p 289–292

    Article  Google Scholar 

  23. P. He and D. Liu, Mechanism of Forming Interfacial Intermetallic Compounds at Interface for Solid State Diffusion Bonding of Dissimilar Materials, Mater. Sci. Eng., A, 2006, 437, p 430–435

    Article  Google Scholar 

  24. R.K. Chinnam, C. Fauteux, J. Neuenschwander, and J. Janczak-Rusch, Evolution of the Microstructure of Sn-Ag-Cu Solder Joints Exposed to Ultrasonic Waves During Solidification, Acta Mater., 2011, 59, p 1474–1481

    Article  CAS  Google Scholar 

  25. A.G. Atkins, The Science of Hardness Testing and its Research Applications, ASM, Metal Park, 1971, p 223

    Google Scholar 

  26. R. Mahmudi, A.R. Geranmayeh, H. Khanbareh, and N. Jahangiri, Indentation Creep of Lead-Free Sn-9Zn and Sn-8Zn-3Bi Solder Alloys, Mater. Des., 2009, 30, p 574–580

    Article  CAS  Google Scholar 

  27. M.J. Rizvi, C. Bailey, Y.C. Chan, M.N. Islam, and H. Lu, Effect of adding 0.3 wt.% Ni into the Sn-0.7 wt.% Cu Solder: Part II. Growth of Intermetallic Layer with Cu During Wetting and Aging, J. Alloys Compd., 2007, 438, p 122–128

    Article  CAS  Google Scholar 

  28. K. Nogita, J. Read, T. Nishimura, K. Sweatman, S. Suenaga, and A.K. Dahle, Microstructure Control in Sn-0.7 Cu Alloys, Mater. Trans., 2005, 46, p 2419–2425

    Article  CAS  Google Scholar 

  29. C.H. Wang and H.T. Shen, Effects of Ni Addition on the Interfacial Reactions Between Sn-Cu Solders and Ni Substrate, Intermetallics, 2010, 18, p 616–622

    Article  Google Scholar 

  30. P.M. Sargent and M.F. Ashby, Indentation Creep, Mater. Sci. Technol., 1992, 8, p 594

    Article  CAS  Google Scholar 

  31. G. Cseh, J. Bar, H.J. Gudladt, J. Lendvai, and A. Juhasz, Indentation Creep in a Short Fibre-Reinforced Metal Matrix Composite, Mater. Sci. Eng., A, 1999, 272, p 145

    Article  Google Scholar 

  32. P. Yao, P. Liu, and J. Liu, Interfacial Reaction and Shear Strength of SnAgCu-xNi/Ni Solder Joints During Aging at 150 °C, Microelectron. Eng., 2009, 86, p 1969–1974

    Article  CAS  Google Scholar 

  33. X.W. Hu, W.J. Chen, and B. Wu, Microstructure and Tensile Properties of Sn-1Cu Lead-Free Solder Alloy Produced by Directional Solidification, Mater. Sci. Eng., A, 2012, 556, p 816–823

    Article  CAS  Google Scholar 

  34. X.W. Hu, K. Li, and Z.X. Min, Microstructure Evolution and Mechanical Properties of Sn0.7Cu0.7Bi Lead-Free Solders Produced by Directional Solidification, J. Alloys Compd., 2013, 566, p 239–245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51465039 and 51765040), Nature Science Foundation of Jiangxi Province (20161BAB206122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Y., Hu, X., Jiang, X. et al. Effect of Ni Addition to Sn0.7Cu Solder Alloy on Thermal Behavior, Microstructure, and Mechanical Properties. J. of Materi Eng and Perform 27, 6564–6576 (2018). https://doi.org/10.1007/s11665-018-3734-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3734-7

Keywords

Navigation