Skip to main content

Advertisement

Log in

A Low-Cost Lightweight Entropic Alloy with High Strength

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, a series of lightweight Al–Mg system entropic alloys containing Zn, Cu, and Si were designed based on the order/disorder or entropy, and eutectic concepts. The alloys of Al58.5Mg31.5Zn4.5Cu4.5Si1; Al63Mg27Zn4.5Cu4.5Si1; Al66.7Mg23.3Zn4.5Cu4.5Si1; Al80Mg14Zn2.7Cu2.7Si0.6; Al85Mg10.5Zn2.025Cu2.025Si0.45; and Al90Mg7Zn1.35Cu1.35Si0.3 were prepared by induction melting under a high-purity argon atmosphere and then casted into stainless steel molds. The microstructures which were tested in the as-cast state exhibited multiphases and contained apparent volume fractions of intermetallic compounds and solid solutions. Then, the compressive mechanical properties of the alloys were measured, and high fracture strengths of 577, 677, 590, 498, 814, and 794 MPa, respectively, were determined. Strong hardening phenomena were observed in the Al80Mg14Zn2.7Cu2.7Si0.6, Al85Mg10.5Zn2.025Cu2.025Si0.45, and Al90Mg7Zn1.35Cu1.35Si0.3 alloys at room temperature, with amazing plasticity percentages of 13.8, 24.8, and 32.7%, respectively. The property differences in the lightweight alloys were analyzed using the following parameters: the critical values of the enthalpy of mixing; atomic size differences; ratio of entropy to enthalpy; valence electron concentration (VEC); and Pauling electronegativity difference. Finally, three of the aforementioned parameters (atomic size difference, enthalpy of mixing, and Pauling electronegativity difference) were regarded in this study as the crucial rules for the lightweight multicomponent alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Li, K.G. Pradeep, Y. Deng et al., Metastable High-Entropy Dual-Phase Alloys Overcome The Strength-Ductility Trade-Off, Nature, 2016, 534, p 227–230

    Article  CAS  Google Scholar 

  2. W. Zhang, P.K. Liaw, and Y. Zhang, Science and Technology in High-Entropy Alloys, Sci. China Mater., 2018, 61(1), p 2–22

    Article  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang et al., Microstructures and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1–93

    Article  Google Scholar 

  4. J.W. Yeh, S.Y. Chang, Y.D. Hong et al., Anomalous Decrease in X-ray Diffraction Intensities of Cu-Ni-Al-Co-Cr-Fe-Si Alloy Systems with Multi-principal Elements, Mater. Chem. Phys., 2007, 103, p 41–46

    Article  CAS  Google Scholar 

  5. R.X. Li, P.K. Liaw, and Y. Zhang, Synthesis of AlxCoCrFeNi High-Entropy Alloys by High-Gravity Combustion from Oxides, Mater. Sci. Eng. A, 2017, 707, p 668–763

    Article  CAS  Google Scholar 

  6. Y. Zou, S. Maiti, W. Steurer et al., Size-Dependent Plasticity in an Nb25Mo25Ta25W25, Refractory High-Entropy Alloy, Acta Mater., 2014, 65, p 85–97

    Article  CAS  Google Scholar 

  7. Y.J. Zhou, Y. Zhang, Y.L. Wang et al., Solid Solution Alloys of AlCoCrFeNiTix with Excellent Room-Temperature Mechanical Properties, Appl. Phys. Lett., 2007, 90, p 181904–181904-3

    Article  Google Scholar 

  8. Y. Zhang, G.L. Chen et al., Phase Change and Mechanical Behaviors of TixCoCrFeNiCu1−yAly High Entropy Alloys, J. ASTM Int., 2010, 7, p 1–8

    Article  Google Scholar 

  9. Y.J. Hsu, W.C. Chiang, and J.K. Wu, Corrosion Behavior of FeCoNiCrCux, High-Entropy Alloys in 3.5% Sodium Chloride Solution, Mater. Chem. Phys., 2005, 92, p 112–117

    Article  CAS  Google Scholar 

  10. C.P. Lee, Y.Y. Chen, C.Y. Hsu et al., The Effect of Boron on the Corrosion Resistance of the High Entropy Alloys Al0.5CoCrCuFeNiBx, J. Electrochem. Soc., 2007, 154, p C424–C430

    Article  CAS  Google Scholar 

  11. Z. Tang, L. Huang, W. He et al., Alloying and Processing Effects on the Aqueous Corrosion Behavior of High-Entropy Alloys, Entropy, 2014, 16, p 895–911

    Article  Google Scholar 

  12. C.J. Tong, Y.L. Chen, and J.W. Yeh, Mechanical Performance of the AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A, 2005, 36, p 1263–1271

    Article  Google Scholar 

  13. M.R. Chen, S.J. Lin, J.W. Yeh et al., Effect of Vanadium Addition on the Microstructure, Hardness, Wear Resistance of Al0.5CoCrCuFeNi High-Entropy Alloy, Metall. Mater. Trans. A, 2006, 37, p 1363–1369

    Article  Google Scholar 

  14. C.Y. Hsu, J.W. Yeh, S.K. Chen et al., Wear Resistance and High-Temperature Compression Strength of FCC CuCoNiCrAl0.5Fe Alloy with Boron Addition, Metall. Mater. Trans. A, 2004, 35, p 1465–1469

    Article  Google Scholar 

  15. M.H. Chuang, M.H. Tsai, W.R. Wang et al., Microstructure and Wear Behavior of AlxCo1.5CrFeNi1.5Tiy, High-Entropy Alloys, Acta Mater., 2011, 59, p 6308–6317

    Article  CAS  Google Scholar 

  16. Y. Shi, B. Yang, and P.K. Liaw, Corrosion-Resistant High-Entropy Alloys: A Review, Met. Open Access Metall. J., 2017, 7(2), p 43

    Google Scholar 

  17. Y. Shi, B. Yang, X. Xie et al., Corrosion of AlxCoCrFeNi High-Entropy Alloys: Al-Content and Potential Scan-Rate Dependent Pitting Behavior, Corros. Sci., 2017, https://doi.org/10.1016/j.corsci.2017.02.019

    Article  Google Scholar 

  18. Y. Shi, L. Collins, R. Feng et al., Homogenization of AlxCoCrFeNi High-Entropy Alloys with Improved Corrosion Resistance, Corros. Sci., 2018, https://doi.org/10.1016/j.corsci.2018.01.030

    Article  Google Scholar 

  19. Y.J. Zhou, Y. Zhang, Y.L. Wang et al., Microstructure and Compressive Properties of Multicomponent Alx(TiVCrMnFeCoNiCu)100−x, High-Entropy Alloys, Mater. Sci. Eng. A, 2007, s454–455, p 260–265

    Article  Google Scholar 

  20. F.J. Wang, Y. Zhang, G.L. Chen et al., Tensile and Compressive Mechanical Behavior of a CoCrCuFeNiAl0.5 High Entropy Alloy, Int. J. Mod. Phys. B, 2012, 23, p 1254–1259

    Article  CAS  Google Scholar 

  21. T.T. Shun and Y.C. Du, Age Hardening of the Al0.3CoCrFeNiC0.1, High Entropy Alloy, J. Alloys Compd., 2009, 478, p 269–272

    Article  CAS  Google Scholar 

  22. O.N. Senkov, G.B. Wilks, J.M. Scott et al., Mechanical properties of Nb25Mo25Ta 25W25, V20Nb20Mo20Ta20W20, Refractory High Entropy Alloys, Intermetallics, 2011, 19, p 698–706

    Article  CAS  Google Scholar 

  23. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov et al., Tensile Properties of an AlCrCuNiFeCo High-Entropy Alloy in As-Cast and Wrought Conditions, Mater. Sci. Eng. A, 2012, 533, p 107–118

    Article  CAS  Google Scholar 

  24. F. Otto, A. Dlouhý, C. Somsen et al., The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61, p 5743–5755

    Article  CAS  Google Scholar 

  25. Y. Zhang, T.T. Zuo, Y.Q. Cheng et al., High-Entropy Alloys with High Saturation Magnetization, Electrical Resistivity, Malleability, Sci. Rep., 2013, 3, p 1455

    Article  Google Scholar 

  26. Y.F. Kao, S.K. Chen, T.J. Chen et al., Electrical, Magnetic, Hall Properties of AlxCoCrFeNi High-Entropy Alloys, J. Alloys Compd., 2011, 509, p 1607–1614

    Article  CAS  Google Scholar 

  27. K.M. Youssef, A.J. Zaddach, C. Niu et al., A Novel Low-Density, High-Hardness, High-Entropy Alloy with Close-Packed Single-Phase Nanocrystalline Structures, Mater. Res. Lett., 2014, 2, p 95–99

    Google Scholar 

  28. O.N. Senkov, S.V. Senkova, C. Woodward et al., Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis, Acta Mater., 2013, 61, p 1545–1557

    Article  CAS  Google Scholar 

  29. O.N. Senkov, S.V. Senkova, D.B. Miracle et al., Mechanical Properties of Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System, Mater. Sci. Eng. A, 2014, 565, p 51–62

    Article  Google Scholar 

  30. R. Feng, M.C. Gao, C. Lee et al., Design of Light-Weight High-Entropy Alloys, Entropy, 2016, 18(9), p 333

    Article  Google Scholar 

  31. R. Feng, M.C. Gao, C. Zhang et al., Phase Stability and Transformation in a Light-Weight High-Entropy Alloy, Acta Materialia, 2018, https://doi.org/10.1016/j.actamat.2017.12.061

    Article  Google Scholar 

  32. Y. Qiu, Y.J. Hu, A. Taylor et al., A Lightweight Single-Phase AlTiVCr Compositionally Complex Alloy, Acta Mater., 2017, 123, p 115–124

    Article  CAS  Google Scholar 

  33. R. Li, J.C. Gao, and K. Fan, Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys, Mater. Sci. Forum, 2010, 650, p 265–271

    Article  CAS  Google Scholar 

  34. R. Li, J.C. Gao, and K. Fan, Microstructure and Mechanical Properties of MgMnAlZnCu High Entropy Alloy Cooling in Three Conditions, Mater. Sci. Forum, 2011, 686, p 235–241

    Article  CAS  Google Scholar 

  35. E.J. Baek, T.Y. Ahn, J.G. Jung et al., Effects of Ultrasonic Melt Treatment and Solution Treatment on the Microstructure and Mechanical Properties of Low-Density Multicomponent Al70Mg10Si10Cu5Zn5 Alloy, J. Alloys Compd, 2016, https://doi.org/10.1016/j.jallcom.2016.11.305

    Article  Google Scholar 

  36. T.Y. Ahn, J.G. Jung, E.J. Baek et al., Temperature Dependence of Precipitation Behavior of Al-6Mg-9Si-10Cu-10Zn-3Ni Natural Composite and Its Impact On Mechanical Properties, Mater. Sci. Eng. A, 2017, 695, p 45–54

    Article  CAS  Google Scholar 

  37. T.Y. Ahn, J.G. Jung, E.J. Baek et al., Temporal Evolution of Precipitates in Multicomponent Al-6Mg-9Si-10Cu-10Zn-3Ni Alloy Studied by Complementary Experimental Methods, J. Alloys Compd., 2017, 701, p 660–668

    Article  CAS  Google Scholar 

  38. X. Yang, S.Y. Chen, J.D. Cotton et al., Phase Stability of Low-Density, Multiprincipal Component Alloys Containing Aluminum, Magnesium, Lithium, JOM, 2014, 66, p 1–4

    Article  Google Scholar 

  39. Y. Zhang, X. Yang, and P.K. Liaw, Alloy Design and Properties Optimization of High-Entropy Alloys, JOM, 2012, 64, p 830–838

    Article  CAS  Google Scholar 

  40. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater., 2008, 10, p 534–538

    Article  CAS  Google Scholar 

  41. Y. Zhang and Y.J. Zhou, Solid Solution Formation Criteria for High Entropy Alloys, Trans. Tech Publ., 2007, 561, p 1337–1339

    Google Scholar 

  42. S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. Mater., 2011, 21, p 433–446

    Article  Google Scholar 

  43. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132, p 233–238

    Article  CAS  Google Scholar 

  44. S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of FCC or BCC Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109, p 103505

    Article  Google Scholar 

  45. O.N. Senkov, G.B. Wilks, D.B. Miracle et al., Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758–1765

    Article  CAS  Google Scholar 

  46. O.N. Senkov, J.M. Scott, S.V. Senkova et al., Microstructure and Room Temperature Properties of A High-Entropy TaNbHfZrTi alloy, J. Alloy. Compd., 2011, 509, p 6043–6048

    Article  CAS  Google Scholar 

  47. O.N. Senkov and C.F. Woodward, Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5TiZr Alloy, Mater Sci Eng A, 2011, 529, p 311–320

    Article  CAS  Google Scholar 

  48. J.W. Yeh, S.Y. Chang, Y.D. Hong et al., Anomalous Decrease in X-ray Diffraction Intensities of Cu–Ni–Al–Co–Cr–Fe–Si Alloy Systems with Multi-principal Elements, Mater Chem Phys, 2007, 103, p 41–46

    Article  CAS  Google Scholar 

  49. J.W. Yeh, S.J. Lin, T.S. Chin et al., Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements, Metall. Mater. Trans. A, 2004, 35, p 2533–2536

    Article  Google Scholar 

  50. Y.J. Zhou, Y. Zhang, Y.L. Wang et al., Solid Solution Alloys of AlCoCrFeNiTix with Excellent Room-Temperature Mechanical Properties, Appl. Phys. Lett., 2007, 90, p 181904–181904-3

    Article  Google Scholar 

  51. S.P. Rudman, Phase stability in metals and alloys, McGraw-Hill, New York, 1967

    Google Scholar 

  52. Q.W. Xing and Y. Zhang, Amorphous Phase Formation Rules in High-Entropy Alloys, Chin. Phys. B, 2017, 26, p 18104–018104

    Article  Google Scholar 

Download references

Acknowledgments

YZ would like to acknowledge the financial support for this research study provided by the National Natural Science Foundation of China (NSFC, 51471025, 51671020). LS would like to thank Dr. X Yang and Ms DY Li for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Additional information

This article is an invited paper selected from presentations at “AeroMat 2017,” held April 10-12, 2017, in Charleston, South Carolina, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, L., Zhang, T., Li, L. et al. A Low-Cost Lightweight Entropic Alloy with High Strength. J. of Materi Eng and Perform 27, 6648–6656 (2018). https://doi.org/10.1007/s11665-018-3720-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3720-0

Keywords

Navigation