Skip to main content
Log in

Effect of Tempering and Rolling on Fatigue Crack Growth Behavior of Modified 9Cr-1Mo Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, fatigue crack growth (FCG) behavior of modified 9Cr-1Mo steel has been investigated near fatigue threshold and Paris regime at room temperature (RT) and 650 °C. The modified 9Cr-1Mo steel was subjected to normalizing at 1050 °C followed by tempering (650-750 °C) and warm rolling at 550 °C followed by tempering in order to improve its precipitation state and refine microstructure. The microstructural parameters such as grain size, block size, lath width and precipitate size were examined and correlated with FCG and tensile properties of investigated samples. The results showed that decreasing tempering temperature significantly reduces the fatigue threshold at RT while increases the yield strength at elevated temperature (i.e., 650 °C). Increase in fatigue threshold is found to increase with the increase in block size, whereas high density of fine precipitates contributed the high temperature strength. The FCG rate in Paris regime was less affected by heat treatment and rolling process at RT. However, rolled sample tested at 650 °C shows a decrease in FCG rate as compared to heat-treated samples. In terms of higher FCG resistance and yield strength, warm rolling followed by tempering at low temperature (i.e., 700 °C) can be considered optimum. For the numerical simulation of FCG behavior, extended finite element method (XFEM) along with Paris law has been implemented in ABAQUS using python script. The simulated FCG behavior is found in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R.L. Klueh, Ferritic/Martensitic Steels for Advanced Nuclear Reactors, Trans. Indian Inst. Met., 2009, 62, p 81–87

    Article  CAS  Google Scholar 

  2. K.L. Murty and I. Charit, Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities, J. Nucl. Mater., 2008, 383, p 189–195

    Article  CAS  Google Scholar 

  3. R.L. Klueh and D.R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, Vol 6, ASTM, West Conshohocken, 2001

    Book  Google Scholar 

  4. M.N. Babu, G. Sasikala, B.S. Dutt, S. Venugopal, A.K. Bhaduri, and T. Jayakumar, Fatigue Crack Growth Behavior of RAFM Steel in Paris and Threshold Regimes at Different Temperatures, Nucl. Eng. Des., 2014, 269, p 103–107

    Article  CAS  Google Scholar 

  5. M.N. Babu, G. Sasikala, B.S. Dutt, S. Venugopal, S.K. Albert, A.K. Bhaduri, and T. Jayakumar, Investigation on Influence of Dynamic Strain Ageing on Fatigue Crack Growth Behaviour of Modified 9Cr-1Mo Steel, Int. J. Fatigue, 2012, 43, p 242–245

    Article  Google Scholar 

  6. M.N. Babu and G. Sasikala, Fatigue Crack Growth Behavior of Ferritic and Austenitic Steels at Elevated Temperatures, Mater. Perform. Charact., 2017, 3, p 182–209

    Google Scholar 

  7. D. Hu, J. Mao, J. Song, F. Meng, and R. Wang, Experimental Investigation of Grain Size Effect on Fatigue Crack Growth Rate in Turbine Disc Superalloy GH4169 Under Service Temperatures and Two Stress Ratios, Mater. Sci. Eng., A, 2016, 669, p 1–24

    Article  Google Scholar 

  8. P. Ma, L. Qian, J. Meng, S. Liu, and F. Zhang, Fatigue Crack Growth Behavior of a Coarse- and a Fine-Grained High Manganese Austenitic Twin-Induced Plasticity Steel, Mater. Sci. Eng., A, 2014, 605, p 160–166

    Article  CAS  Google Scholar 

  9. R. Jiang, S. Everitt, M. Lewandowski, N. Gao, and P.A.S. Reed, Grain Size Effects in a Ni- Based Turbine Disc Alloy in the Time and Cycle Dependent Crack Growth Regimes, Int. J. Fatigue, 2014, 62, p 217–227

    Article  CAS  Google Scholar 

  10. T. Yokobori, A Critical Evaluation of Mathematical Equations for Fatigue Crack Growth with Special Reference to Ferrite Grain Size and Monotonic Yield Strength Dependence. Fatigue Mech. (ASTM STP 675). 683–706 (1979).

  11. S. Li, G. Zhu, and Y. Kang, Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1 C–1.1 Si–1.7 Mn steel, J. Alloys Compd., 2016, 675, p 104–115

    Article  CAS  Google Scholar 

  12. V. Chaswal, G. Sasikala, S.K. Ray, S.L. Mannan, and B. Raj, Fatigue Crack Growth Mechanism in aged 9Cr-1Mo Steel: Threshold and Paris Regimes, Mater. Sci. Eng., A, 2005, 395, p 251–264

    Article  Google Scholar 

  13. J.H. Lee, H.Y. Lee, S.G. Hong, and S.B. Lee, Fatigue Crack Growth Behavior of Mod. 9Cr-1Mo Steel at Elevated Temperatures: Effect of Temperature, Loading Frequency and R Ratio, J. Mech. Sci. Technol., 2017, 31, p 3665–3669

    Article  Google Scholar 

  14. C. Wassilew, K. Herschbach, E. Materna-Morris, and K. Ehrlich, Ferritic Alloys for Use in Nuclear Energy Technologies, J.W. Davis and D.J. Michel, Ed., The Metallurgical Society of AIME, Warrendale, 1984, p 607

    Google Scholar 

  15. R.L. Klueh and J.M. Vitek, Elevated Temperature Tensile Properties of Irradiated 9Cr-1MoVNb Steel, J. Nucl. Mater., 1985, 132, p 27–31

    Article  CAS  Google Scholar 

  16. R.L. Klueh and J.M. Vitek, Tensile Behavior of Irradiated 12Cr-1MoVW Steel, J. Nucl. Mater., 1985, 137, p 44–50

    Article  CAS  Google Scholar 

  17. R.L. Klueh and J.M. Vitek, Tensile Properties of 9Cr-1MoVNb and 12Cr-1MoVW Steels Irradiated to 23 dpa at 390 to 550 °C, J. Nucl. Mater., 1991, 182, p 230–239

    Article  CAS  Google Scholar 

  18. R.L. Klueh and J.M. Vitek, Fluence and Helium Effects on the Tensile Properties of Ferritic Steels at low Temperature, J. Nucl. Mater., 1989, 161, p 13–23

    Article  CAS  Google Scholar 

  19. T. Simm, L. Sun, S. McAdam, P. Hill, M. Rawson, and K. Perkins, The Influence of Lath, Block and Prior Austenite Grain (PAG) Size on the Tensile, Creep and Fatigue Properties of Novel Maraging Steel, Materials (Basel), 2017, 10, p 730

    Article  Google Scholar 

  20. S. Li, Y. Kang, and S. Kuang, A Effects of Microstructure on Fatigue Crack Growth Behavior in Cold-Rolled Dual Phase Steels, Mater. Sci. Eng., 2014, 612, p 153–161

    Article  CAS  Google Scholar 

  21. L.A. James, Fatigue-Crack Propagation Behavior of HT-9 Steel, J. Nucl. Mater., 1987, 149, p 138–142

    Article  CAS  Google Scholar 

  22. M. Song, C. Sun, Z. Fan, Y. Chen, R. Zhu, K.Y. Yu, K.T. Hartwig, H. Wang, and X. Zhang, A Roadmap for Tailoring the Strength and Ductility of Ferritic/Martensitic T91 Steel Via Thermo-Mechanical Treatment, Acta Mater., 2016, 112, p 361–377

    Article  CAS  Google Scholar 

  23. S. Suresh, Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge, 1998

    Book  Google Scholar 

  24. S. Kumar, A.S. Shedbale, I.V. Singh, and B.K. Mishra, Elasto-Plastic Fatigue Crack Growth Analysis of Plane Problems in the Presence of Flaws Using XFEM, J. Contemp. Phys., 2015, 50, p 420–440

    Google Scholar 

  25. C. Ye, J. Shi, and G.J. Cheng, An Extended Finite Element Method (XFEM) Study on the Effect of Reinforcing Particles on the Crack Propagation Behavior in a Metal-Matrix Composite, Int. J. Fatigue, 2012, 44, p 151–156

    Article  CAS  Google Scholar 

  26. P.J. Hurley and W.J. Evans, A New Method for Predicting Fatigue Crack Propagation Rates, Mater. Sci. Eng., A, 2007, 466, p 265–273

    Article  Google Scholar 

  27. S. Ma, X.B. Zhang, N. Recho, and J. Li, The Mixed-Mode Investigation of the Fatigue Crack in CTS Metallic Specimen, Int. J. Fatigue, 2006, 28, p 1780–1790

    Article  CAS  Google Scholar 

  28. I.V. Singh, B.K. Mishra, S. Bhattacharya, and R.U. Patil, The Numerical Simulation of Fatigue Crack Growth Using Extended Finite Element Method, Int. J. Fatigue, 2012, 36, p 109–119

    Article  Google Scholar 

  29. K. Nasri and M. Zenasni, Comptes rendus Mecanique Fatigue Crack Growth Simulation in Coated Materials Using X-FEM, Comptes Rendus Mec., 2017, 345, p 271–280

    Article  Google Scholar 

  30. ASTM Int., Standard Test Methods for Tension Testing of Metallic Materials 1, ASTM. 1–27 (2009).

  31. E647-15e1, ASTM E647-15e1, ASTM, Standard Test Method for Measurement of Fatigue Crack Growth Rates 1, ASTM B. Stand. 03, 1–49 (2016).

  32. ASTM E384: Standard Test Method for Knoop and Vickers Hardness of Materials, ASTM Stand. 1–43 (2012).

  33. G. Dimmler, P. Weinert, E. Kozeschnik, and H. Cerjak, Quantification of the Laves Phase in Advanced 9-12% Cr Steels Using a Standard SEM, Mater. Charact., 2003, 51, p 341–352

    Article  CAS  Google Scholar 

  34. F. Vodopivec, D. Kmetic, and L. Jekla, Effect of Operating Temperature on Microstructure and Creep Resistance of 20 CrMoV 121 Steel, Mater. Technol., 2004, 38, p 233–239

    CAS  Google Scholar 

  35. C. Pandey, A. Giri, and M.M. Mahapatra, Effect of Normalizing Temperature on Microstructural Stability and Mechanical Properties of Creep Strength Enhanced Ferritic P91 Steel, Mater. Sci. Eng., A, 2016, 657, p 173–184

    Article  CAS  Google Scholar 

  36. A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, and A.K. Bhaduri, Effect of Deformation Temperature on the Ductile-Brittle Transition Behavior of a Modified 9Cr-1Mo Steel, Mater. Sci. Eng., A, 2015, 630, p 58–70

    Article  CAS  Google Scholar 

  37. A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, and A.K. Bhaduri, Effect of normalization temperatures on ductile-brittle transition temperature of a modified 9Cr-1Mo steel, Mater. Sci. Eng., A, 2014, 618, p 219–231

    Article  CAS  Google Scholar 

  38. S.M. Yin, F. Yang, X.M. Yang, S.D. Wu, S.X. Li, and G.Y. Li, The role of Twinning–Detwinning on Fatigue Fracture Morphology of Mg-3%Al-1%Zn Alloy, Mater. Sci. Eng., A, 2008, 494, p 397–400

    Article  Google Scholar 

  39. H. Pathak, A. Singh, and I.V. Singh, Fatigue Crack Growth Simulations of Homogeneous and bi-Material Interfacial Cracks Using Element free Galerkin Method, Appl. Math. Model., 2014, 38, p 3093–3123

    Article  Google Scholar 

  40. A. Jameel and G.A. Harmain, Modeling and Numerical Simulation of Fatigue Crack Growth in Cracked Specimens Containing Material Discontinuities, Strength Mater., 2016, 48, p 294–307

    Article  Google Scholar 

  41. B.N. Rao and S. Rahman, An Interaction Integral Method for Analysis of Cracks in Orthotropic Functionally Graded Materials, Comput. Mech., 2003, 32, p 40–51

    Article  Google Scholar 

  42. K. Tanaka, Fatigue Crack Propagation from a Crack Inclined to the Cyclic Tensile Axis, Eng. Fract. Mech., 1974, 6, p 493

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is done as part of doctoral thesis work of Mr. Sanjay Samant under the scheme of Quality Improvement Programme (QIP) of All Indian Council for Technical Education, India, and it does not receive any specific funding from any other funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samant, S.S., Singh, I.V. & Singh, R.N. Effect of Tempering and Rolling on Fatigue Crack Growth Behavior of Modified 9Cr-1Mo Steel. J. of Materi Eng and Perform 27, 5898–5912 (2018). https://doi.org/10.1007/s11665-018-3700-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3700-4

Keywords

Navigation