Skip to main content

Advertisement

Log in

An Artificial Neural Network Model to Predict the Bainite Plate Thickness of Nanostructured Bainitic Steels Using an Efficient Network-Learning Algorithm

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nanostructured bainitic steel has an extraordinary ultrahigh strength of about 2.0 GPa along with good toughness of 30 MPa m1/2. The finer thickness of plate 20-80 nm is largely responsible for achieving such a large hardness of 690-720 HV. In this work, a multilayer perceptron-based artificial neural network (ANN) model has been developed to predict the thickness of bainite plate pertaining to nanostructured bainitic steels. The inputs of the ANN model are, namely, Gibbs free energy for bainitic transformation, austenite strength, transformation temperature for bainite and carbon concentration in the steel. The model prediction revealed that the bainite plate thickness critically depends on austenite strength and Gibbs free energy. From the neural prediction, it is concluded that formation of nanostructured bainitic steel is feasible only if sufficient austenite strength (above 165 MPa) has been achieved. This can be accomplished with a minimum carbon content of 0.5 wt.% in steel and transformation temperature below 300 °C. Higher driving force (Gibbs free energy) below − 1800 J/mol is another prerequisite condition of formation of nanostructured bainite steel. The network-learning architecture has been optimized using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to minimize the network training error within eight training cycles. The algorithm facilitates a faster convergence of network training and testing errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F.G. Caballero, H.K.D.H. Bhadeshia, J.A. Mazwella, D.G. Jones, and P. Brown, Very Strong Low Temperature Bainite, Mater. Sci. Technol., 2002, 18, p 279

    Article  CAS  Google Scholar 

  2. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Development of Hard Bainite, ISIJ Int., 2003, 43, p 1238

    Article  CAS  Google Scholar 

  3. F.G. Caballero and H.K.D.H. Bhadeshia, Very Strong Bainite, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 251

    Article  CAS  Google Scholar 

  4. H.K.D.H. Bhadeshia, Nanostructured Bainite, R. Soc. A, 2010, 466, p 3–18

    Article  CAS  Google Scholar 

  5. C. Garcia-Mateo, M. Peet, F.G. Caballero, and H.K.D.H. Bhadeshia, Tempering of Hard Mixture of Bainitic Ferrite and Austenite, Mater. Sci. Technol., 2004, 20, p 814–818

    Article  CAS  Google Scholar 

  6. J. Daigne, M. Guttmann, and J.P. Naylor, The Influence of Lath Boundaries and Carbide Distribution on the Yield Strength of 0.4% C Tempered Martensitic Steels, Mater. Sci. Eng., 1982, 56, p 1–10

    Article  CAS  Google Scholar 

  7. H.K.D.H. Bhadeshia, Bainite in Steels, Institute of Materials, London, 1992, p 19

    Google Scholar 

  8. G. Langford and M. Cohen, Calculation of Cell Size Strengthening of Wire-Drawn Iron, Met. Trans., 1970, 1, p 1478–1480

    Article  CAS  Google Scholar 

  9. G. Langford and M. Cohen, Strain Hardening of Iron by Severe Plastic Deformation, ASM Trans. Quart., 1969, 62, p 623–638

    CAS  Google Scholar 

  10. H.K.D.H. Bhadeshia, Bainite in Steels, Institute of Materials, London, 1992, p 1–458

    Google Scholar 

  11. E. Swallow and H.K.D.H. Bhadeshia, Bayesian Neural Network Model for Austenite Formation in Steels, Mater. Sci. Technol., 1996, 12, p 121–125

    Article  CAS  Google Scholar 

  12. C.H. Young and H.K.D.H. Bhadeshia, The Strength of Mixtures of Bainite and Martensite, Mater. Sci. Technol., 1994, 10, p 209–214

    Article  CAS  Google Scholar 

  13. S.B. Singh, H.K.D.H. Bhadeshia, D.J.C. MacKay, H. Carey, and I. Martin, Neural Network Analysis of Steel Plate Processing, Ironmak. Steelmak., 1998, 25, p 355–365

    CAS  Google Scholar 

  14. S.K. Das, Neural Network Modelling of Flow Stress and Mechanical Properties for Hot Strip Rolling of TRIP Steel Using an Efficient Learning Algorithm, Ironmak. Steelmak., 2013, 40, p 298–304

    Article  CAS  Google Scholar 

  15. S. Hore, S.K. Das, S. Banerjee, and S. Mukherjee, An Adaptive Neuro-Fuzzy Inference System Based Modelling to Predict Mechanical Properties of Hot-Rolled TRIP Steel, Ironmak. Steelmak., 2017, 44, p 656–665

    Article  CAS  Google Scholar 

  16. G. Khalaj, H. Pouraliakbar, N. Arab, and M. Nazerfakhari, Correlation of Passivation Current Density and Potential by Using Chemical Composition and Corrosion Cell Characteristics in HSLA Steels, Measurement, 2015, 75, p 5–11

    Article  Google Scholar 

  17. M.J. Faizabadi, G. Khalaj, H. Pouraliakbar, and M.R. Jandaghi, Predictions of Toughness and Hardness by using Chemical Composition and Tensile Properties in Microalloyed Line Pipe Steels, Neural Comput. Appl., 2014, 25, p 1993–1999

    Article  Google Scholar 

  18. H. Pouraliakbar, M.-J. Khalaj, M. Nazerfakhari, and G. Khalaj, Artificial Neural Networks for Hardness Prediction of HAZ with Chemical Composition and Tensile Test of X70 Pipeline Steels, J. Iron. Steel Res. Int., 2015, 22(5), p 446–450

    Article  Google Scholar 

  19. N. Narimani, B. Zarei, H. Pouraliakbar, and G. Khalaj, Predictions of Corrosion Current Density and Potential by Using Chemical Composition and Corrosion Cell Characteristics in Microalloyed Pipeline Steels, Measurement, 2015, 62, p 97–107

    Article  Google Scholar 

  20. S.B. Singh and H.K.D.H. Bhadeshia, Estimation of Bainite Plate Thickness in Low-Alloy Steels, Mater. Sci. Eng. A, 1998, 245, p 72–79

    Article  Google Scholar 

  21. H.-S. Yang and H.K.D.H. Bhadeshia, Designing Low Carbon, Low Temperature Bainite, Mater. Sci. Technol., 2008, 24, p 335–342

    Article  CAS  Google Scholar 

  22. R. Callan, The Essence of Neural Networks, Prentice Hall Europe, London, 1999

    Google Scholar 

  23. R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM J. Sci. Comput., 1995, 16, p 1190–1208

    Article  Google Scholar 

  24. A. Van Ooyen and B. Nienhuis, Improving the Convergence of the Back-Propagation Algorithm, Neural Netw., 1992, 5, p 465–471

    Article  Google Scholar 

  25. H. Huang, M.Y. Sherif, and P.E.J. Rivera-Díaz-del-Castillo, Combinatorial Optimization of Carbide-Free Bainitic Nanostructures, Acta Mater., 2013, 61, p 1639–1647

    Article  CAS  Google Scholar 

  26. C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, and R. Elvira, Tensile Behaviour of a Nanocrystalline Bainitic Steel Containing 3 wt.% Silicon, Mater. Sci. Eng. A, 2012, 549, p 185–192

    Article  CAS  Google Scholar 

  27. F.G. Caballero, C. Garcia-Mateo, and H.K.D.H. Bhadeshia, Acceleration of Low-Temperature Bainite, ISIJ Int., 2003, 43, p 1821–1825

    Article  Google Scholar 

  28. M.A. Soliman, Phase Transformation and Mechanical Properties of New Austenite-Stabilised Bainite Steels, Ph.D. Dissertation, 2007

  29. M. Soliman and H. Palkowski, Ultra-Fine Bainite Structure in Hypo-eutectoid Steels, ISIJ Int., 2007, 47, p 1703–1710

    Article  CAS  Google Scholar 

  30. M. Soliman and H. Palkowski, Microstructure Development and Mechanical Properties of Medium Carbon Carbide-Free Bainite Steels, Procedia Eng., 2014, 81, p 1306–1311

    Article  CAS  Google Scholar 

  31. J. Yang, T.S. Wang, B. Zhang, and F.C. Zhang, Microstructure and Mechanical Properties of High-Carbon Si-Al-Rich Steel by Low Temperature Austempering, Mater. Des., 2012, 35, p 170–174

    Article  CAS  Google Scholar 

  32. C. Garcia-Mateo and F.G. Caballero, The Role of Retained Austenite on Tensile Properties of Steels with Bainitic Microstructures, Mater. Trans., 2005, 46(8), p 1839–1846

    Article  CAS  Google Scholar 

  33. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Mechanical Properties of Low-Temperature Bainite, Mater. Sci. Forum, 2005, 500–501, p 495–502

    Article  Google Scholar 

  34. W. Solano-Alvarez, H.F.G. Abreub, M.R. da Silvac, and M.J. Peet, Phase Quantification in Nanobainite via Magnetic Measurements and X-Ray Diffraction, J. Magn. Magn. Mater., 2015, 378, p 200–205

    Article  CAS  Google Scholar 

  35. H.K.D.H. Bhadeshia, C. Garcia-Mateo, and P. Brown, Bainite Steel and Methods of Manufacture Thereof, US20110126946A1, 2011

  36. T. Sourmail, F.G. Caballero, C. Garcia-Mateo, V. Smanio, C. Ziegler, M. Kuntz, R. Elvira, A. Leiro, E. Vuorinen, and T. Teeri, Evaluation of Potential of High Si High C Steel Nanostructured Bainite for Wear and Fatigue Applications, Mater. Sci. Technol., 2013, 29, p 10

    Google Scholar 

  37. R. Rementeria, L. Morales-Rivas, M. Kuntz, C. Garcia-Mateo, E. Kerscher, T. Sourmail, and F.G. Caballero, On the Role of Microstructure in Governing the Fatigue Behaviour of Nanostructured Bainitic Steels, Mater. Sci. Eng. A, 2015, 630, p 71–77

    Article  CAS  Google Scholar 

  38. A. Leiro, E. Vuorinen, K.-G. Sundin, B. Prakash, T. Sourmail, V. Smanio, F.G. Caballero, C. Garcia-Mateo, and R. Elvira, Wear of Nano-Structured Carbide-Free Bainitic Steels Under Dry Rolling-Sliding Conditions, Wear, 2013, 298–299, p 42–47

    Article  Google Scholar 

  39. C. Garcia-Mateo, T. Sourmail, F.G. Caballero, V. Smanio, C. Ziegler, M. Kuntz, R. Elvira, A. Lerio, E. Vuorinen, and T. Teeri, Nanostructured Steel Industrialization: a Plausible, in CENIM reality, APM 2013 Conference Chair European RFCS, 2013

  40. M.N. Yoozbashi, S. Yazdani, and T.S. Wang, Design of a New Nanostructured, High-Si Bainitic Steel with Lower Cost Production, Mater. Des., 2011, 32, p 3248–3253

    Article  CAS  Google Scholar 

  41. H. Amel-Farzad, H.R. Faridi, F. Rajabpour, A. Abolhasani, S. Kazemi, and Y. Khaledzadeh, Developing Very Hard Nanostructured, Mater. Sci. Eng. A, 2013, 559, p 68–73

    Article  CAS  Google Scholar 

  42. Y.H. Wang, F.C. Zhang, and T.S. Wang, A Novel Bainitic Steel Comparable to Maraging Steel in Mechanical Properties, Scr. Mater., 2013, 68, p 763–766

    Article  CAS  Google Scholar 

  43. L.C. Chang and H.K.D.H. Bhadeshia, Metallographic Observations of Bainite Transformation Mechanism, Mater. Sci. Technol., 1995, 11, p 105

    Article  CAS  Google Scholar 

  44. L.C. Chang and H.K.D.H. Bhadeshia, Austenite Films in Bainitic Microstructures, Mater. Sci. Technol., 1995, 11, p 874–881

    Article  CAS  Google Scholar 

  45. L.C. Chang and H.K.D.H. Bhadeshia, Stress Affected Transformation to Lower Bainite, J. Mater. Sci., 1996, 31, p 2145–2148

    Article  CAS  Google Scholar 

  46. H. Lan, L. Du, N. Zhou, and X. Liu, Effect of Austempering Route on Microstructural Characterization of Nanobainitic Steel, Acta Metall. Sin. (Engl. Lett.), 2014, 27(1), p 19–26

    Article  CAS  Google Scholar 

  47. L. Morales-Rivas, A. González-Orive, C. Garcia-Mateo, A. Hernández-Creus, F.G. Caballero, and L. Vázquez, Nanomechanical Characterization of Nanostructured Bainitic Steel: Peak Force Microscopy and Nanoindentation with AFM, Sci. Rep., 2015, 5, p 1–6

    Article  Google Scholar 

  48. X.Y. Long, J. Kang, B. Lv, and F.C. Zhang, Carbide-Free Bainite in Medium Carbon Steel, Mater. Des., 2014, 64, p 237–245

    Article  CAS  Google Scholar 

  49. S. Das Bakshi, P.H. Shipway, and H.K.D.H. Bhadeshia, Three-Body Abrasive Wear of Fine Pearlite, Nanostructured Bainite and Martensite, Wear, 2013, 308(1–2), p 46–53

    Article  CAS  Google Scholar 

  50. F.G. Caballero, C. Garcia-Mateo, and M.K. Miller, Design of Novel Bainitic Steels: Moving from Ultra Fine to Nanoscale Structures, JOM, 2014, 66(5), p 747–755

    Article  CAS  Google Scholar 

  51. W. Solano-Alvarez, E.J. Pickering, and H.K.D.H. Bhadeshia, Degradation of Nanostructured Bainitic Steel Under Rolling Contact Fatigue, Mater. Sci. Eng. A, 2014, 617, p 156–164

    Article  CAS  Google Scholar 

  52. H.S. Hasan, M.J. Peet, M.-N. Avettand-Fènoël, and H.K.D.H. Bhadeshia, Effect of Tempering upon The Tensile Properties of a Nanostructured Bainitic Steel, Mater. Sci. Eng. A, 2014, 615, p 340–347

    Article  CAS  Google Scholar 

  53. S.H. Kim, K.-H. Kim, C.-M. Bae, J.S. Lee, and D.-W. Suh, Microstructure and Mechanical Properties of Austempered Medium–Carbon Spring Steel, Met. Mater. Int., 2018, https://doi.org/10.1007/s12540-018-0085-8

    Article  Google Scholar 

  54. C.N. Hulme-Smith, I. Lonardelli, M.J. Peet, A.C. Dippel, and H.K.D.H. Bhadeshia, Enhanced Thermal Stability in Nanostructured Bainitic Steel, Scr. Mater., 2013, 69(2), p 191–194

    Article  CAS  Google Scholar 

  55. F. Hu, P.D. Hodgson, and K.M. Wu, Acceleration of the Superbainite Transformation Through a Coarse Austenite Grain Size, Mater. Lett., 2014, 122, p 240–243

    Article  CAS  Google Scholar 

  56. M. Kundu, S. Datta, S. Curtze, V.-T. Kuokkala, and P.P. Chattopadhyay, Advanced High Strength Steel, Springer, India, 2018, p 87–94

    Book  Google Scholar 

  57. J. He, A. Zhao, and C. Zhi, Hongliang Fan Acceleration of Nanobainite Transformation by Multi-step Ausforming Process, Scri. Mater., 2015, 107, p 71–74

    Article  CAS  Google Scholar 

  58. J. Zhao, X. Jia, K. Guo, N.N. Jia, Y.F. Wang, Y.H. Wang, and T.S. Wang, Transformation Behavior and Microstructure Feature of Large Strain Ausformed Low-Temperature Bainite in a Medium C-Si Rich Alloy Steel, Mater. Sci. Eng. A, 2017, 682, p 527–534

    Article  CAS  Google Scholar 

  59. H.-S. Yang, Design of Low-Carbon, Low-Temperature Bainite, Ph.D. thesis.

  60. H. Feng, W. Kai-Ming, and H. Zheng, Influence of Co and Al on Bainitic Transformation in Super Bainitic Steels, Steel Res. Int., 2013, 84, p 1–6

    Article  Google Scholar 

  61. C. Garcia-Mateo, F.G. Caballero, T. Sourmail, and V. Smanio, Industrialised Nanocrystalline Bainitic Steels—Design Approach, Int. J. Mater. Res., 2014, 105(8), p 725–734

    Article  CAS  Google Scholar 

  62. S.A. Miab, B. Avishan, and S. Yazdani, Wear Resistance of Two Nanostructural Bainitic Steels with Different Amounts of Mn and Ni, Acta Metall. Sin. (Engl. Lett.), 2016, 29(6), p 587–594

    Article  Google Scholar 

  63. M.N. Yoozbashi and S. Yazdani, Mechanical Properties of Nanostructured, Low Temperature Bainitic Steel Designed Using a Thermodynamic Model, Mater. Sci. Eng. A, 2010, 527, p 3200–3205

    Article  Google Scholar 

  64. M. Peet and H.K.D.H. Bhadeshia, MUCG 83. Mater. Algorithms Proj. 2011.

  65. H.K.D.H. Bhadeshia, Bainite in Steel, IOM communications Ltd, London, 2001, p 134

    Google Scholar 

  66. H.K.D.H. Bhadeshia, Bainite in Steels, Institute of Materials, London, 1992, p 131–133

    Google Scholar 

  67. H.N. Mhaskar and C.A. Micchelli, Approximation by Superposition of a Sigmoidal Function and Radial Basis Functions, Adv. Appl. Math., 1992, 13, p 350–373

    Article  Google Scholar 

  68. H. Pouraliakbar, S. Firooz, M.R. Jandaghi, G. Khalaj, and A. Nazari, Predicting the Ultimate Grain Size of Aluminum Sheets Undergone Constrained Groove Pressing, Int. J. Adv. Manuf. Technol., 2016, 86, p 1639–1658

    Article  Google Scholar 

  69. C. Garcia-Mateo and H.K.D.H. Bhadeshia, Nucleation Theory for High-Carbon Bainite, Mater. Sci. Eng. A, 2004, 378, p 289–292

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minal Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M., Das, S.K. An Artificial Neural Network Model to Predict the Bainite Plate Thickness of Nanostructured Bainitic Steels Using an Efficient Network-Learning Algorithm. J. of Materi Eng and Perform 27, 5845–5855 (2018). https://doi.org/10.1007/s11665-018-3696-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3696-9

Keywords

Navigation