Skip to main content
Log in

In Steam Short-Time Oxidation Kinetics of FeCrAl Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to investigate the oxidation process of FeCrAl alloy developed by NPIC under simulated LOCA conditions, three experimental groups of alloys were exposed to the steam atmosphere and heated to test temperature (550, 1000, and 1200 °C), respectively, and then maintained at the temperature for 4 hours. The oxidation kinetics of alloys were obtained with a high-precision synchronous thermal analyzer, and the oxide film was investigated by XPS, XRD, and SEM technologies. The results showed that the FeCrAl alloy still retains good oxidation resistance under 1200 °C steam atmosphere. The oxidation process of alloy at 1200 °C can be described into six stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.J. Ott, K.R. Robb, and D. Wnag, Preliminary Assessment of Accident-Tolerant Fuels on LWR Performance During Normal Operation and Under DB and BDB Accident Conditions, J. Nucl. Mater., 2014, 448(1–3), p 520–533

    Article  CAS  Google Scholar 

  2. Yamamoto Y, Field KG, Snead LL. Optimization of Nuclear Grade FeCrAl Fuel Cladding for Light Water Reactors, Accident Tolerant Fuel Concepys for Light Water Beactors, IAEA Tecdoc Series, IAEA, USA, 2016, p 55–65

  3. K.A. Terrani, C.M. Parish, D. Shin et al., Protection of Zirconium by Alumina-and Chromia-Forming Iron Alloys Under High-Temperature Steam Exposure, J. Nucl. Mater., 2013, 438(1–3), p 64–71

    Article  CAS  Google Scholar 

  4. K.A. Terrani, S.J. Zinkle, and L.L. Snead, Advanced Oxidation-Resistant Iron-Based Alloys for LWR Fuel Cladding, J. Nucl. Mater., 2014, 448(1–3), p 420–435

    Article  CAS  Google Scholar 

  5. Y. Yamamoto, B.A. Pint, K.A. Terrani et al., Development and Property Evaluation of Nuclear Grade Wrought FeCrAl Fuel Cladding for Light Water Reactors, J. Nucl. Mater., 2015, 467, p 703–716

    Article  CAS  Google Scholar 

  6. M. Bachhav, G.R. Odette, and E.A. Marquis, Microstructural Changes in a Neutron-Irradiated Fe-15 at. % Cr Alloy, J. Nucl. Mater., 2014, 454(1), p 381–386

    Article  CAS  Google Scholar 

  7. J.E. Pawel, A.F. Rowcliffe, G.E. Lucas et al., Irradiation Performance of Stainless Steels for ITER Application, J. Nucl. Mater., 1996, 239, p 126–131

    Article  CAS  Google Scholar 

  8. H. Tanigawa, K. Shiba, A. Möslang et al., Status and Key Issues of Reduced Activation Ferritic/Martensitic Steels as the Structural Material for a DEMO Blanket, J. Nucl. Mater., 2011, 417(1–3), p 9–15

    Article  CAS  Google Scholar 

  9. C. Badini and F. Laurella, Oxidation of FeCrAl Alloy: Influence of Temperature and Atmosphere on Scale Growth Rate and Mechanism, Surf. Coat. Technol., 2001, 135(2), p 291–298

    Article  CAS  Google Scholar 

  10. F. Liu and K. Stiller, Atom Probe Tomography of Thermally Grown Oxide Scale on FeCrAl, Ultramicroscopy, 2013, 132, p 279–284

    Article  CAS  Google Scholar 

  11. S. Dryepondt, A.R.V. Put, and B.A. Pint, Effect of H2O and CO2 on the Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl, Oxid. Met., 2013, 79(5–6), p 627–638

    Article  CAS  Google Scholar 

  12. D.J. Park, H.G. Kim, J.Y. Park et al., A Study of the Oxidation of FeCrAl Alloy in Pressurized Water and High-Temperature Steam Environment, Corros. Sci., 2015, 94, p 459–465

    Article  CAS  Google Scholar 

  13. S. Okabe, M. Kohno, K. Ishii et al., Oxidation Resistance of Rapidly Solidified FeCrAl Ribbons at High Temperature, Mater. Sci. Eng. A, 1994, 181, p 1104–1108

    Article  Google Scholar 

  14. M.W. Brumm and H.J. Grabke, The Oxidation Behaviour of NiAl-I. Phase Transformations in the Alumina Scale During Oxidation of NiAl and NiAl-Cr Alloys, Corros. Sci., 1992, 33(11), p 1677–1690

    Article  CAS  Google Scholar 

  15. D. Pan, R. Zhang, H. Wang et al., Formation and Stability of Oxide Layer in FeCrAl Fuel Cladding Material Under High-Temperature Steam, J. Alloys Compd., 2016, 684, p 549–555

    Article  CAS  Google Scholar 

  16. R.T. Sweet, N.M. George, G.I. Maldonado et al., Fuel Performance Simulation of Iron-Chrome-Aluminum (FeCrAl) Cladding During Steady-State LWR Operation, Nucl. Eng. Des., 2018, 328, p 10–26

    Article  CAS  Google Scholar 

  17. S. Dryepondt, K.A. Unocic, D.T. Hoelzer et al., Development of Low-Cr ODS FeCrAl Alloys for Accident-Tolerant Fuel Cladding, J. Nucl. Mater., 2018, 501, p 59–71

    Article  CAS  Google Scholar 

  18. K.A. Gamble, T. Barani, D. Pizzocri et al., An Investigation of FeCrAl Cladding Behavior Under Normal Operating and Loss of Coolant Conditions, J. Nucl. Mater., 2017, 491, p 55–66

    Article  CAS  Google Scholar 

  19. M.N. Gussev, E. Cakmak, and K.G. Field, Impact of Neutron Irradiation on Mechanical Performance of FeCrAl Alloy Laser-Beam Weldments, J. Nucl. Mater., 2018, 504, p 221–233

    Article  CAS  Google Scholar 

  20. K.G. Field, S.A. Briggs, K. Sridharan et al., Mechanical Properties of Neutron-Irradiated Model and Commercial FeCrAl Alloys, J. Nucl. Mater., 2017, 489, p 118–128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51801194), the Sichuan applied basic research project (2018JY0430) and the International Science and Technology Cooperation Program of China (2015DFR60370).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haijun Wang or Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, D., Zhang, R., Wang, H. et al. In Steam Short-Time Oxidation Kinetics of FeCrAl Alloys. J. of Materi Eng and Perform 27, 6407–6414 (2018). https://doi.org/10.1007/s11665-018-3665-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3665-3

Keywords

Navigation