Skip to main content

Advertisement

Log in

Achieving Excellent Strength–Ductility and Impact Toughness Combination by Cyclic Quenching in Medium Mn TRIP-Aided Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A novel heat treatment process combined cyclic quenching (CQ) with austenite reversion treatment (ART) is proposed to obtain high strength–ductility and high-impact toughness combination in Fe-0.18C-8.92Mn-3.43Al (in mass%) steel. The process referred as CQ-ART was designed for accomplishing the following objectives: (i) refine the prior austenite grains during cyclic quenching process, (ii) further obtain the refined austenite–ferrite block and (iii) improve the stabilities of retained austenite with Mn/C enrichment during ART process. The outstanding product of tensile strength and total elongation of CQ-ART-treated steels was 41.53 and 37.39 GPa%, respectively, and higher than the ART steel of 27.45 GPa%. The highest Charpy impact toughness of CQ-ART steel can reach to 221 J, which is mainly attributed to the refined grains and discontinuous transformation-induced plasticity (TRIP) effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High Strength Fe-Mn-(Al, Si) TRIP-TWIP Steels Development-Properties-Application, Int. J. Plast., 2000, 16, p 1391–1409

    Article  Google Scholar 

  2. G. Frommeyer, U. Brüx, and P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes, ISIJ Int., 2003, 43, p 438–446

    Article  CAS  Google Scholar 

  3. E. Doege, S. Kulp, and C. Sunderkötter, Properties and Application of TRIP-Steel in Sheet Metal Forming, Steel Res. Int., 2002, 73, p 303–308

    Article  CAS  Google Scholar 

  4. H. Aydin, E. Essadiqi, I.H. Jung, and S. Yue, Development of 3rd Generation AHSS with Medium Mn Content Alloying Compositions, Mater. Sci. Eng., A, 2013, 564, p 501–508

    Article  CAS  Google Scholar 

  5. D.W. Suh and S.J. Kim, Medium Mn Transformation-Induced Plasticity Steels: Recent Progress and Challenges, Scripta Mater., 2017, 126, p 63–67

    Article  CAS  Google Scholar 

  6. Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, Microstructure-Mechanical Property Relationship and Austenite Stability in Medium-Mn TRIP Steels: The Effect of Austenite-Reverted Transformation and Quenching-Tempering Treatments, Mater. Sci. Eng., A, 2017, 682, p 211–219

    Article  CAS  Google Scholar 

  7. H. Liu, L.X. Du, J. Hu, and H.Y. Wu, Interplay Between Reversed Austenite and Plastic Deformation in a Directly Quenched and Intercritically Annealed 0.04C-5Mn Low-Al Steel, J. Alloys Compd., 2017, 695, p 2072–2082

    Article  CAS  Google Scholar 

  8. Y. Ma, Medium-Manganese Steels Processed by Austenite-Reverted-Transformation Annealing for Automotive Applications, Mater. Sci. Technol., 2017, 33, p 1713–1727

    Article  CAS  Google Scholar 

  9. R.A. Grange, Strengthening Steel by Austenite Grain Refinement, ASM Trans. Quart., 1966, 59, p 26–48

    CAS  Google Scholar 

  10. T. Furuhara, K. Kikumoto, and H. Saito, Phase Transformation from Fine-Grained Austenite, ISIJ Int., 2008, 48, p 1038–1045

    Article  CAS  Google Scholar 

  11. H. Kim, D.W. Suh, and N.J. Kim, Fe-Al-Mn-C Lightweight Structural Alloys: A Review on the Microstructures and Mechanical Properties, Sci. Technol. Adv. Mater., 2013, 14, p 1–11

    Article  Google Scholar 

  12. Y.K. Lee and J. Han, Current Opinion in Medium Manganese Steel, Mater. Sci. Technol., 2015, 31, p 843–856

    Article  CAS  Google Scholar 

  13. H.F. Xu, J. Zhao, and W.Q. Cao, Tempering Effects on the Stability of Retained Austenite and Mechanical Properties in a Medium Manganese Steel, ISIJ Int., 2012, 52, p 868–873

    Article  CAS  Google Scholar 

  14. V. Colla, M. De Sanctis, A. Dimatteo, G. Lovicu, A. Solina, and R. Valentini, Strain Hardening Behavior of Dual-Phase Steels, Metall. Mater. Trans. A, 2009, 40, p 2557–2567

    Article  Google Scholar 

  15. D.W. Suh, S.J. Park, and T.H. Lee, Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel, Metall. Mater. Trans. A, 2010, 41, p 397–408

    Article  Google Scholar 

  16. A. Mishra and J. Maity, Structure-Property Correlation of AISI, 1080 Steel Subjected to Cyclic Quenching Treatment, Mater. Sci. Eng., A, 2015, 646, p 169–181

    Article  CAS  Google Scholar 

  17. S.J. Lee, Y.M. Park, and Y.K. Lee, Reverse Transformation Mechanism of Martensite to Austenite in a Metastable Austenitic Alloy, Mater. Sci. Eng., A, 2009, 515, p 32–37

    Article  Google Scholar 

  18. Y. Lü, B. Hutchinson, and D.A. Molodov, Effect of Deformation and Annealing on the Formation and Reversion of ε-Martensite in an Fe-Mn-C Alloy, Acta Mater., 2010, 58, p 3079–3090

    Article  Google Scholar 

  19. K.I. Sugimoto, M. Kobayashi, and S.I. Hashimoto, Ductility and Strain-Induced Transformation in a High-Strength Transformation-Induced Plasticity-Aided Dual-Phase Steel, Metall. Mater. Trans. A, 1992, 23, p 3085–3091

    Article  Google Scholar 

  20. Z.H. Cai, H. Ding, and H. Kamoutsi, Interplay Between Deformation Behavior and Mechanical Properties of Intercritically Annealed and Tempered Medium-Manganese Transformation-Induced Plasticity Steel, Mater. Sci. Eng., A, 2016, 654, p 359–367

    Article  CAS  Google Scholar 

  21. K. Sugimoto, H. Tanino, and J. Kobayashi, Warm Ductility of 0.2%C-1.5%Si-5%Mn TRIP-Aided Steel, Mater. Sci. Eng., A, 2017, 688, p 237–243

    Article  CAS  Google Scholar 

  22. J. Shi, X. Sun, M. Wang, and W. Hui, Enhanced Work-Hardening Behavior and Mechanical Properties in Ultrafine-Grained Steels with Large-Fractioned Metastable Austenite, Scripta Mater., 2010, 63, p 815–818

    Article  CAS  Google Scholar 

  23. Z.H. Cai, H. Ding, and R.D.K. Misra, Austenite Stability and Deformation Behavior in a Cold-Rolled Transformation-Induced Plasticity Steel with Medium Manganese Content, Acta Mater., 2015, 84, p 229–236

    Article  CAS  Google Scholar 

  24. P.J. Gibbs, B.C. De Cooman, D.W. Brown, and B. Clausen, Strain Partitioning in Ultra-Fine Grained Medium-Manganese Transformation Induced Plasticity Steel, Mater. Sci. Eng., A, 2014, 609, p 323–333

    Article  CAS  Google Scholar 

  25. Z.C. Li, H. Ding, and R.D.K. Misra, Microstructural Evolution and Deformation Behavior in the Fe-(6, 8.5)Mn-3Al-0.2C TRIP Steels, Mater. Sci. Eng., A, 2016, 672, p 161–169

    Article  CAS  Google Scholar 

  26. Z.H. Cai, H. Ding, and X. Xue, Significance of Control of Austenite Stability and Three-Stage Work-Hardening Behavior of an Ultrahigh Strength-High Ductility Combination Transformation-Induced Plasticity Steel, Scripta Mater., 2013, 68, p 865–868

    Article  CAS  Google Scholar 

  27. T. Hojo, J. Kobayashi, and K. Sugimoto, Impact Properties of Low-Alloy Transformation-Induced Plasticity-Steels with Different Matrix, Mater. Sci. Technol., 2016, 32, p 1035–1042

    Article  CAS  Google Scholar 

  28. H. Tanino, M. Horita, and K.I. Sugimoto, Impact Toughness of 0.2Pct C-1.5Pct Si-(1.5 to 5)Pct Mn Transformation-Induced Plasticity-Aided Steels with an Annealed Martensite Matrix, Metall. Mater. Trans. A, 2016, 47, p 2073–2080

    Article  CAS  Google Scholar 

  29. K. Sugimoto, H. Tanino, and J. Kobayashi, Impact Toughness of Medium-Mn Transformation-Induced Plasticity-Aided Steels, steel res, Int., 2015, 86, p 1151–1160

    CAS  Google Scholar 

  30. S.M. Sung, K.I. Sugimoto, and M. Kobayashi, Impact Properties of Low Alloy TRIP Steels, Tetsu-to-Hagane, 2000, 86, p 563–569

    Article  Google Scholar 

  31. M. Calcagnotto, D. Ponge, and D. Raabe, Effect of Grain Refinement to 1 μm on Strength and Toughness of Dual-Phase Steels, Mater. Sci. Eng. A, 2010, 527(29), p 7832–7840

    Article  Google Scholar 

  32. A. Ghaheri, A. Shafyei, and M. Honarmand, Effects of Inter-Critical Temperatures on Martensite Morphology, Volume Fraction and Mechanical Properties of Dual-Phase Steels Obtained from Direct and Continuous Annealing Cycles, Mater. Des., 2014, 62, p 305–319

    Article  CAS  Google Scholar 

  33. J. Sun, T. Jiang, and H. Liu, Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying, Metall. Mater. Trans. A, 2016, 47, p 5985–5993

    Article  CAS  Google Scholar 

  34. J. Chen, M. Lv, Z. Liu, and G. Wang, Combination of Ductility and Toughness by the Design of Fine Ferrite/Tempered Martensite-Austenite Microstructure in a Low Carbon Medium Manganese Alloyed Steel Plate, Mater. Sci. Eng., A, 2015, 648, p 51–56

    Article  CAS  Google Scholar 

  35. H.F. Lan, L.X. Du, and Q. Li, Improvement of Strength-Toughness Combination in Austempered Low Carbon Bainitic Steel: The Key Role of Refining Prior Austenite Grain Size, J. Alloys Compd, 2017, 710, p 702–710

    Article  CAS  Google Scholar 

  36. G. Gao, H. Zhang, and X. Gui, Enhanced Ductility and Toughness in an Ultrahigh-Strength Mn-Si-Cr-C Steel: The Great Potential of Ultrafine Filmy Retained Austenite, Acta Mater., 2014, 76, p 425–433

    Article  CAS  Google Scholar 

  37. W.T. Zhao, X.F. Huang, and W.G. Huang, Comparative Study on a 0.2C Steel Treated by Q&P and A&T Treatments, Mater. Sci. Technol., 2016, 32, p 1374–1381

    Article  CAS  Google Scholar 

  38. J. Hu, L.X. Du, G.S. Sun, and H. Xie, The Determining Role of Reversed Austenite in Enhancing Toughness of a Novel Ultra-Low Carbon Medium Manganese High Strength Steel, Scripta Mater., 2015, 104, p 87–90

    Article  CAS  Google Scholar 

  39. Y. Zou, Y.B. Xu, Z.P. Hu, and X.L. Gu, Austenite Stability and its Effect on the Toughness of a High Strength Ultra-Low Carbon Medium Manganese Steel Plate, Mater. Sci. Eng., A, 2016, 675, p 153–163

    Article  CAS  Google Scholar 

  40. J. Chen, M. Lv, S. Tang, Z. Liu, and G. Wang, Correlation Between Mechanical Properties and Retained Austenite Characteristics in a Low-Carbon Medium Manganese Alloyed Steel Plate, Mater. Charact., 2015, 106, p 108–111

    Article  CAS  Google Scholar 

  41. W. Cao, M. Zhang, C. Huang, S. Xiao, H. Dong, and Y. Weng, Ultrahigh Charpy Impact Toughness (~450 J) Achieved in High Strength Ferrite/Martensite Laminated Steels, Sci. Rep., 2017, 7, p 41459

    Article  CAS  Google Scholar 

  42. I.C. Yi, Y. Ha, and H. Lee, Improvement of Impact Toughness of 5Mn-1Al-0.5Ti steel by Intercritical Annealing, Metals. Mater. Int., 2017, 23, p 283–289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks and gratitude to Science and Technology Support Plan in Sichuan Province of China for providing financial support for this work under project of Development and Application of Vanadium and Titanium Microalloyed New Products for High Performance Railway Track.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingmin Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Huang, X., Wang, Y. et al. Achieving Excellent Strength–Ductility and Impact Toughness Combination by Cyclic Quenching in Medium Mn TRIP-Aided Steel. J. of Materi Eng and Perform 27, 5769–5777 (2018). https://doi.org/10.1007/s11665-018-3662-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3662-6

Keywords

Navigation