Skip to main content
Log in

Effect of Boron Content on Microstructure, Mechanical Properties, and Oxidation Resistance of Mo-Si-B Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mo-Si-B composites with boron content from 0 to 8 wt.% were prepared by spark plasma sintering using Mo, Si, and B elemental powders. The effects of boron content on the phase composition, mechanical properties, and high-temperature oxidation resistance of the Mo-Si-B composites were investigated. The results show the evolution of the major phase constitution of the composites with increasing boron content is in the following sequence: (MoSi2, Mo5Si3) → (MoSi2, Mo5Si3, Mo5SiB2) → (MoSi2, MoB) → (MoSi2, MoB, MoB2). As the boron content increases, both the hardness and flexural strength of the composites increases, but the fracture toughness of the composites gradually decreases. The strengthening mechanisms for the composites are second-phase strengthening and grain refinement strengthening. However, the formation of brittle phases, i.e., Mo5SiB2, MoB, and MoB2, reduces the toughness of the composites. In addition, since a dense barrier layer of SiO2-B2O3 formed on the surface of the composites inhibits the inward diffusion of oxygen, B-doped Mo-Si-B exhibits better oxidation resistance compared with non-doped composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.K. Vasudevan and J.J. Petrovic, A Comparative Overview of Molybdenum Disilicide Composites, Mater. Sci. Eng. A., 1992, 155, p 1–17

    Article  Google Scholar 

  2. J.J. Petrovic, Mechanical Behavior of MoSi2 and MoSi2 Composites, Mater. Sci. Eng. A., 1995, 192–193, p 31–37

    Article  Google Scholar 

  3. J.J. Petrovic, Toughening Strategies for MoSi2-Based High Temperature Structural Silicides Materials, Intermet, 2000, 8, p 1175–1182

    Article  CAS  Google Scholar 

  4. B.V. Cockeram, The Fracture Toughness and Toughening Mechanism of Commercially Available Unalloyed Molybdenum and Oxide Dispersion Strengthened Molybdenum with an Equiaxed, Large Grain Structure, Metall. Mater. Trans. A, 2009, 40A, p 2843–2860

    Article  CAS  Google Scholar 

  5. R. Li, G. Zhang, B. Li, X. Chen, S. Ren, J. Wang, and J. Sun, The Multi-Scale Microstructure and Strengthening Mechanisms of Mo-12Si-8.5BxZr (at.%) Alloys, Int. J. Refract. Met. H., 2017, 68, p 65–74

    Article  CAS  Google Scholar 

  6. L. Sun, J.S. Pan, and C.J. Lin, Wear Behavior of TiC-MoSi2 Composites, Mater. Lett., 2003, 57, p 1239–1243

    Article  CAS  Google Scholar 

  7. K.V. Manukyan, S.L. Kharatyan, G. Blugan, P. Kocher, and J. Kuebler, MoSi2-Si3N4 Composites: Influence of Starting Materials and Fabrication Route on Electrical and Mechanical Properties, J. Eur. Ceram. Soc., 2009, 29, p 2053–2060

    Article  CAS  Google Scholar 

  8. H. Ramezanalizadeh and S. Heshmati-Manesh, Preparation of MoSi2-Al2O3 Nanocomposite Via MASHS Route, Int. J. Refract. Met. H., 2012, 31, p 210–217

    Article  CAS  Google Scholar 

  9. C.L. Yeh and W.H. Chen, Combustion Synthesis of MoSi2 and MoSi2-Mo5Si3 Composites, J. Alloys Comp., 2007, 438, p 165–170

    Article  CAS  Google Scholar 

  10. R.B. Schwarz, S.R. Srinivasan, J.J. Petrovic, and C.J. Maggiore, Synthesis of Molybdenum Disilicide by Mechanical Alloying, Mater. Sci. Eng. A, 1992, 155, p 75–83

    Article  Google Scholar 

  11. R. Gibala, A.K. Ghosh, D.C. Van Aken, D.J. Srolovitz, A. Basu, H. Chang, D.P. Mason, and W. Yang, Mechanical Behavior and Interface Design of MoSi2-Based Alloys and Composites, Mater. Sci. Eng. A., 1992, 155, p 147–158

    Article  Google Scholar 

  12. J.H. Yan, H.A. Zhang, S.W. Tang, and J.G. Xu, Room Temperature Mechanical Properties and High Temperature Oxidation Behavior of MoSi2 Matrix Composite Reinforced by Adding La2O3 and Mo5Si3, Mater. Charact., 2009, 60, p 447–450

    Article  CAS  Google Scholar 

  13. J.H. Yan, J.X. Huang, K.L. Li, and Y. Wang, Microstructure and Properties of MoSi2-Mo5Si3 Composites In Situ Synthesized by Spars Plasma Sintering, T. Mater. Heat Treat., 2017, 38, p p1–10

    Google Scholar 

  14. M. Akinc, K. Meyer, M.J. Kramer, A.J. Thom, J.J. Huebsch, and B. Cook, Boron-Doped Molybdenum Silicides for Structural Applications, Mat. Sci. Eng. A., 1999, 261, p 16–23

    Article  Google Scholar 

  15. M. Kmeyer and M. Akmc, Oxidation Behavior of Boron-Modified Mo5Si3 at 800–1 300 °C, J. Am. Ceram. Soc., 1996, 79, p 938–944

    Article  Google Scholar 

  16. K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi, Physical and Mechanical Properties of Single Crystals of the T2 Phase in the Mo-Si-B System, Intermet, 2001, 9, p 591–602

    Article  CAS  Google Scholar 

  17. P.R. Taleghani, S.R. Bakhshi, M. Erfanmanesh, G.H. Borhani, and R. Vafaei, Improvement of MoSi2 Oxidation Resistance Via Boron Addition: Fabrication of MoB/MoSi2 Composite by Mechanical Alloying and Subsequent Reactive Sintering, Powder Technol., 2014, 254, p 241–247

    Article  CAS  Google Scholar 

  18. R. Mitra, A.K. Srivastava, N. Eswara Prasad, and S. Kumari, Microstructure and Mechanical Behavior of Reaction Hot Pressed Multiphase Mo-Si-B and Mo-Si-B-Al Intermetallic Alloys, Intermet, 2006, 14, p 1461–1471

    Article  CAS  Google Scholar 

  19. J.H. Yan, Y. Wang, P. Zhou, J.W. Qiu, and Y.M. Wang, Microstructures and Room Temperature Mechanical Properties of Mo-12Si-8.5B-8Cr Alloy, Trans. Indian Inst. Met., 2018, 71(1), p 245–251

    Article  CAS  Google Scholar 

  20. C.A. Nunes, R. Sakidja, Z. Dong, and J.H. Perepezko, Liquidus Projection for the Mo-Rich Portion of the Mo-Si-B System, Intermet, 2000, 8, p 327–337

    Article  CAS  Google Scholar 

  21. X. Fan, K. Hack, and T. Ishigaki, Calculated C-MoSi2, and B-Mo5Si3, Pseudo-Binary Phase Diagrams for the Use in Advanced Materials Processing, Mater. Sci. Eng. A., 2000, 278, p 46–53

    Article  Google Scholar 

  22. K.E. Spear and P.K. Liao, The B-Mo (Boron-Molybdenum) System, Bull. Alloy Phase Diag., 1988, 9, p 457–466

    Article  Google Scholar 

  23. L.Q. Zhang, K.M. Pan, J. Wang, and J.P. Lin, Spark Plasma Sintering Synthesis of Intermetallic T2 in the Mo-Si-B System, Adv. Powder Technol., 2013, 24, p 913–920

    Article  CAS  Google Scholar 

  24. Y. Yang and Y.A. Chang, Thermodynamic Modeling of the Mo-Si-B System, Intermet, 2005, 13, p 121–128

    Article  CAS  Google Scholar 

  25. J.H. Schneibel and J.A. Sekhar, Microstructure and Properties of MoSi2-MoB and MoSi2-Mo5Si3 Molybdenum Silicides, Mater. Sci. Eng. A., 2003, 340, p 204–211

    Article  Google Scholar 

  26. Y. Suzuki, T. Sekino, and K. Niihara, Effects of ZrO2 Addition on Microstructure and Mechanical Properties of MoSi2, Scripta Metall. et Mater., 1995, 33, p 69–74

    Article  CAS  Google Scholar 

  27. J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie, Fracture and Fatigue Resistance of Mo-Si-B Alloys for Ultra High-Temperature Structural Applications, Scripta Metall., 2004, 50, p 459–464

    Article  CAS  Google Scholar 

  28. R. Li et al., Improved Fracture Toughness of a Mo-12Si-8.5B-3Zr Alloy by Grain Coarsening and its Multiple Toughening Mechanisms, J. Alloys Compd., 2018, 743, p 716–727

    Article  CAS  Google Scholar 

  29. K. Yoshimi, S. Nakatani, T. Suda, S. Hanada, and H. Habazaki, Oxidation Behavior of Mo5SiB2-Based Alloy at Elevated Temperatures, Intermet, 2002, 10, p 407–414

    Article  CAS  Google Scholar 

  30. AYu Potanin, YuS Pogozhev, E.A. Levashov, A.V. Novikov, N.V. Shvindina, and T.A. Sviridova, Kinetics and Oxidation Mechanism of MoSi2-MoB Ceramics in the 600–1200 °C Temperature Range, Ceram. Int., 2017, 43, p 10478–10486

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Natural Science Foundation of China (Grant No. 51475161), and Research Foundation of Education Bureau of Hunan Province (Grant No. 15A059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Huang, J., Li, K. et al. Effect of Boron Content on Microstructure, Mechanical Properties, and Oxidation Resistance of Mo-Si-B Composites. J. of Materi Eng and Perform 27, 6218–6226 (2018). https://doi.org/10.1007/s11665-018-3652-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3652-8

Keywords

Navigation