Skip to main content
Log in

Wear Mechanisms in Contacts Involving Slippers in Axial Piston Pumps: A Multi-Technical Analysis

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Axial piston pumps are widely used in actuation as power conversion systems, especially in aeronautics. Even though they combine compactness and efficiency, wear of their parts reduces their lifespan. Studies on these pumps often consist in analytic or numerical analyses of lubricated contact between their components. Piston slippers are in tribological contacts with swashplate, pistons and slipper retainer. This study aims to understand wear mechanisms in the contacts involving this central component. An experimental multi-technical analysis of helicopter pumps parts after several functioning times is presented. To determine wear mechanisms, worn surfaces are observed with SEM. 3D surface roughness measurements provide surface topography. Contact conditions and consequently wear severity and mechanisms differ from one contact to another. Detached coarse carbides from the swashplate surface act as an abrading third-body against slippers and swashplate. Debris generated in this contact is carried by the fluid to the other contacts. Although pistons are made of the same steel as swashplate, there is no carbide detachment and wear comes from debris polluting the fluid. Slipper retainer is almost not worn, and debris causes abrasive wear and craters generation in the slippers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A. Wohlers and H. Murrenhoff, Tribological Simulation of a Hydrostatic Swash Plate Bearing in an Axial Piston Pump. Bath Workshop on Power Transmission and Motion Control, PTMC p 129–141 (2007)

  2. M. Rokala, O. Calonius, K.T. Koskinen, and M. Pietola, Study of Lubrication Conditions in Slipper-Swashplate Contact in Water Hydraulic Axial Piston Pump Test Rig, Proc. JFPS Int. Symp. Fluid Power, 2008, 2008, p 91–94

    Article  Google Scholar 

  3. J. Bergada and J. Watton, The Hydrostatic/Hydrodynamic Behaviour of an Axial Piston Pump Slipper with Multiple Lands, Meccanica, 2010, 45, p 585–602

    Article  Google Scholar 

  4. A. Schenk and M. Ivantysynova, An Investigation of the Impact of Elastohydrodynamic Deformation on Power Loss in the Slipper Swashplate Interface. Symposium on Fluid Power 2011, (2011)

  5. Y. Sun and J. Jiang, Study on Oil Film Characteristics of Slipper Within Axial Piston Pump Under Different Working Condition, Proc. JFPS Int. Symp. Fluid Power, 2011, 2011, p 534–539

    Google Scholar 

  6. S. Lin and J. Hu, Tribo-Dynamic Model of Slipper Bearings, Appl. Math. Model., 2015, 39, p 548–558

    Article  Google Scholar 

  7. A. Schenk and M. Ivantysynova, A Transient Thermoelastohydrodynamic Lubrication Model for the Slipper/Swashplate in Axial Piston Machines, J. Tribol., 2015, 137(3), p 031701

    Article  Google Scholar 

  8. N.D. Manring, C.L. Wray, and Z. Dong, Experimental Studies on the Performance of Slipper Bearings Within Axial-Piston Pumps, J. Tribol., 2004, 126, p 511–518

    Article  Google Scholar 

  9. A. Jourani, Three Dimensional Modelling of Temperature Distribution During Belt Finishing, Int. J. Surf. Sci. Eng., 2015, 9, p 231–246

    Article  Google Scholar 

  10. A. Jourani, Effect of Roughness Geometries in Contact Mechanics, Int. J. Mater. Prod. Technol., 2015, 51, p 127–138

    Article  Google Scholar 

  11. A. Jourani, A New Three-Dimensional Numerical Model of Rough Contact: Influence of Mode of Surface Deformation on Real Area of Contact and Pressure Distribution, J. Tribol., 2014, 137, p 011401

    Article  Google Scholar 

  12. L. Petit et al., Presentation of a New Method to Measure the Friction Coefficient Using an Electromagnetic Digital Device, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2010, 224, p 1019–1026

    Article  Google Scholar 

  13. S. Mezghani, A. Jourani, and H. Zahouani, The Scale Effect of Roughness in Contact Problems, WIT Trans. Built Environ., 2006, 85, p 369–378

    Google Scholar 

  14. A. Jourani, B. Hagège, S. Bouvier, M. Bigerelle, and H. Zahouani, Influence of Abrasive Grain Geometry on Friction Coefficient and Wear Rate in Belt Finishing, Tribol. Int., 2013, 59, p 30–37

    Article  Google Scholar 

  15. A. Jourani, Effect of Asperity Interactions and Mesh Resolution on Friction Coefficient, Int. J. Appl. Mech., 2016, 08, p 1650090

    Article  Google Scholar 

  16. N.P. Suh, The Delamination Theory of Wear, Wear, 1973, 25, p 111–124

    Article  CAS  Google Scholar 

  17. M. Godet, The Third-Body Approach: A Mechanical View of Wear, Wear, 1984, 100, p 437–452

    Article  Google Scholar 

  18. M.S. Bingley and S. Schnee, A Study of the Mechanisms of Abrasive Wear for Ductile Metals Under Wet and Dry Three-Body Conditions, Wear, 2005, 258, p 50–61

    Article  CAS  Google Scholar 

  19. R. Holm, Electrical Contacts. (H. Geber, 1946)

  20. J.F. Archard, Wear Theory and Mechanisms. Wear Control Handbook (W.O. Winer, M.B. Peterson, Eds.) (American Society of Mechanical Engineers, 1980).

  21. H.C. Meng and K.C. Ludema, Wear Models and Predictive Equations: Their Form and Content, Wear, 1995, 181–183, p 443–457

    Article  Google Scholar 

  22. Q. Zou, P. Huang, and S. When, Abrasive Wear Model for Lubricated Sliding Contacts, Wear, 1996, 196, p 72–76

    Article  CAS  Google Scholar 

  23. J. Ma, J. Chen, J. Li, Q. Li, and C. Ren, Wear Analysis of Swash Plate/Slipper Pair of Axis Piston Hydraulic Pump, Tribol. Int., 2015, 90, p 467–472

    Article  Google Scholar 

  24. X. Wang, S. Lin, S. Wang, Z. He, and C. Zhang, Remaining Useful Life Prediction Based on the Wiener Process for an Aviation Axial Piston Pump, Chin. J. Aeronaut., 2016, 29, p 779–788

    Article  Google Scholar 

  25. M. Maamouri et al., A Novel System to Study Wear, Friction, Lubricants, J. Mater. Eng. Perform., 1994, 3, p 527–539

    Article  CAS  Google Scholar 

  26. Y.S. Wang, S. Narasimhan, J.M. Larson, and S.K. Schaefer, Wear and Wear Mechanism Simulation of Heavy-Duty Engine Intake Valve and Seat Inserts, J. Mater. Eng. Perform., 1998, 7, p 53–65

    Article  Google Scholar 

  27. S.-Y. Lee and Y.-S. Hong, Effect of CrSiN Thin Film Coating on the Improvement of the Low-Speed Torque Efficiency of a Hydraulic Piston Pump, Surf. Coat. Technol., 2007, 202, p 1129–1134

    Article  CAS  Google Scholar 

  28. M. Kapsiz, M. Durat, and F. Ficici, Friction and Wear Studies Between Cylinder Liner and Piston Ring Pair Using Taguchi Design Method, Adv. Eng. Softw., 2011, 42, p 595–603

    Article  Google Scholar 

  29. J.A. Brandão, P. Cerqueira, J.H.O. Seabra, and M.J.D. Castro, Measurement of Mean Wear Coefficient During Gear Tests Under Various Operating Conditions, Tribol. Int., 2016, 102, p 61–69. https://doi.org/10.1016/j.triboint.2016.05.008

    Article  Google Scholar 

  30. R.W. Maruda et al., Tool Wear Characterizations in Finish Turning of AISI, 1045 Carbon Steel for MQCL Conditions, Wear, 2017, 372, p 54–67

    Article  Google Scholar 

  31. W. Grzesik, Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of the Art, J. Mater. Eng. Perform., 2016, 25, p 4460–4468

    Article  CAS  Google Scholar 

  32. M. Zecchino, Why Average Roughness is Not Enough, Adv. Mater. Process., 2003, 161, p 25–28

    Google Scholar 

  33. E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, and H.H. Soliman, Roughness Parameters, J. Mater. Process. Technol., 2002, 123, p 133–145

    Article  Google Scholar 

  34. M. Bigerelle and A. Iost, A Numerical Method to Calculate the Abbott Parameters: A Wear Application, Tribol. Int., 2007, 40, p 1319–1334

    Article  CAS  Google Scholar 

  35. J. Schmähling and F.A. Hamprecht, Generalizing the Abbott-Firestone Curve by Two New Surface Descriptors, Wear, 2007, 262, p 1360–1371

    Article  Google Scholar 

  36. G. Petropoulos, C. Pandazaras, and I. Stamos, Considering Bearing Curves of Roughness on Face Milled Surfaces of Steel, Tribol. Ind., 2001, 23, p 51–54

    Google Scholar 

  37. A.A. Torrance, A Simple Datum for Measurement of the Abbott Curve of a Profile and Its First Derivative, Tribol. Int., 1997, 30, p 239–244

    Article  Google Scholar 

  38. M. Stewart, A New Approach to the Use of Bearing Area Curve. (Society of Manufacturing Engineers, 1990)

  39. M. Rîpă, L. Tomescu, M. Hapenciuc, and I. Crudu, Tribological Characterisation of Surface Topography Using Abbott-Firestone Curve, ANNALS, 2003, 24, p 26

    Google Scholar 

  40. S. Johansson, P.H. Nilsson, R. Ohlsson, C. Anderberg, and B.-G. Rosén, New Cylinder Liner Surfaces for Low Oil Consumption, Tribol. Int., 2008, 41, p 854–859

    Article  CAS  Google Scholar 

  41. D. Girodin and G. Dudragne, Aciers à Roulements Pour Applications Aéronautiques. Proceeding 3rd Symposium Ascometal (2000)

  42. J.R. Yang, T.H. Yu, and C.H. Wang, Martensitic Transformations in AISI, 440C Stainless Steel, Mater. Sci. Eng., A, 2006, 438-440, p 276–280

    Google Scholar 

  43. S.H. Salleh, Investigation of Microstructures and Properties of 440C Martensitic Stainless Steel, Int. J. Mech. Mater. Eng., 2009, 4, p 21–24

    Google Scholar 

  44. Arparjirasakul, Patcharawit & Kitkamthorn. Dry Sliding Wear Characteristics of AISI440C Martensitic Stainless Steel. International Conference on Advances in Engineering and Technology (2014)

  45. A.V. Reddy, Investigation of Aeronautical and Engineering Component Failures, CRC Press, Boca Raton, 2004

    Book  Google Scholar 

  46. D.W. Hetzner and W. Van Geertruyden, Crystallography and Metallography of Carbides in High Alloy Steels, Mater. Charact., 2008, 59, p 825–841

    Article  CAS  Google Scholar 

  47. A.M. El-Rakayby and B. Mills, The Role of Primary Carbides in the Wear of High Speed Steels, Wear, 1986, 112, p 327–340

    Article  CAS  Google Scholar 

  48. E. Mucchi, A. Agazzi, G. D’Elia, and G. Dalpiaz, On the Wear and Lubrication Regime in Variable Displacement Vane Pumps, Wear, 2013, 306, p 36–46

    Article  CAS  Google Scholar 

  49. V. Dunaevsky, Generalized Wear Coefficient, Tribology Data Handbook, E.R. Booser, Ed., CRC Press, Boca Raton, 1997, p 455–461

    Google Scholar 

  50. M.F. Ashby and D.R.H. Jones, Chapter 29—Case Studies in Friction and Wear. Engineering Materials 1 (Fourth Edition) 431–442 (Butterworth-Heinemann, 2012). https://doi.org/10.1016/b978-0-08-096665-6.00029-5

    Chapter  Google Scholar 

  51. E. Rabinowicz, L.A. Dunn, and P.G. Russell, A Study of Abrasive Wear Under Three-Body Conditions, Wear, 1961, 4, p 345–355

    Article  Google Scholar 

  52. K. Tsubota, Evaluation of Bearing Steels Produced by Powder Metallurgy Process. Creative Use of Bearing Steels 95–105 (Joseph J. C. Hoo, 1993)

  53. M. Neri and R. Colás, Analysis of a Martensitic Stainless Steel that Failed Due to the Presence of Coarse Carbides, Mater. Charact., 2001, 47, p 283–289

    Article  CAS  Google Scholar 

  54. F. Meurling, A. Melander, M. Tidesten, and L. Westin, Influence of Carbide and Inclusion Contents on the Fatigue Properties of High Speed Steels and Tool Steels, Int. J. Fatigue, 2001, 23, p 215–224

    Article  CAS  Google Scholar 

  55. K.-H. Zum Gahr, Wear by Hard Particles, Tribol. Int., 1998, 31, p 587–596

    Article  Google Scholar 

  56. J.D. Verhoeven, A Review of Microsegregation Induced Banding Phenomena in Steels, J. Mater. Eng. Perform., 2000, 9, p 286–296

    Article  CAS  Google Scholar 

  57. P.K. Adishesha, Effect of Steel Making and Processing Parameters on Carbide Banding in Commercially Produced ASTM A-295 52100 Bearing Steel. Bearing Steel Technology 27–46 (J. M. Beswick, 2002).

  58. H.K.D.H. Bhadeshia, Steels for Bearings, Prog. Mater Sci., 2012, 57, p 268–435

    Article  CAS  Google Scholar 

  59. S.C. Krishna, K.T. Tharian, K.V.A. Chakravarthi, A.K. Jha, and B. Pant, Heat Treatment and Thermo-Mechanical Treatment to Modify Carbide Banding in AISI, 440C Steel: A Case Study, Metallogr. Microstruct. Anal., 2016, 5, p 108–115

    Article  CAS  Google Scholar 

  60. C. Rodenburg and W.M. Rainforth, A Quantitative Analysis of the Influence of Carbides Size Distributions on Wear Behaviour of High-Speed Steel in Dry Rolling/Sliding Contact, Acta Mater., 2007, 55, p 2443–2454

    Article  CAS  Google Scholar 

  61. R. Chattopadhyay, Wear Resistant Materials. Surface Wear: Analysis, Treatment, and Prevention 203–248 (ASM International, 2001).

  62. L. Fang, X.L. Kong, J.Y. Su, and Q.D. Zhou, Movement Patterns of Abrasive Particles in Three-Body Abrasion, Wear, 1993, 162, p 782–789

    Article  Google Scholar 

  63. R.H. Frith and W. Scott, Control of Solids Contamination in Hydraulic Systems—An Overview, Wear, 1993, 165, p 69–74

    Article  CAS  Google Scholar 

  64. M. Kalin, F. Majdič, J. Vižintin, J. Pezdirnik, and I. Velkavrh, Analyses of the Long-Term Performance and Tribological Behavior of an Axial Piston Pump Using Diamondlike-Carbon-Coated Piston Shoes and Biodegradable Oil, J. Tribol., 2007, 130, p 011013

    Article  Google Scholar 

  65. G. Schuhler, A. Jourani, S. Bouvier, and J.-M. Perrochat, Efficacy of Coatings and Thermochemical Treatments to Improve Wear Resistance of Axial Piston Pumps. 44th Leeds-Lyon Symposium on Tribology (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Schuhler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuhler, G., Jourani, A., Bouvier, S. et al. Wear Mechanisms in Contacts Involving Slippers in Axial Piston Pumps: A Multi-Technical Analysis. J. of Materi Eng and Perform 27, 5395–5405 (2018). https://doi.org/10.1007/s11665-018-3610-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3610-5

Keywords

Navigation