Skip to main content
Log in

Hygrothermal Effect on Composites Under In-Plane Fatigue at Stress Ratios of R = −1 and R = 0.1: An Analysis of Quasi-Isotropic Stitched Carbon Fibers

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aeronautic structures normally operate under high levels of hygroscopic moisture from the surrounding environment at different temperature ranges while in service. Under such conditions, the behavior of laminate composite submitted to cyclic or static loadings can change drastically. In order to understand those effects in stitched fabrics, fatigue tests with open-hole specimens were carried out with a stress ratio of R = −1 and R = 0.1. The specimens were fatigue-tested as provided (environmental conditions) and after exposed to hygrothermal weathering conditions. Based on evidences from recent studies available in the open literature, e.g., effect of water diffusion on epoxy matrix, the overall results indicated a significant reduction in stiffness after the specimens are exposed to hygrothermal effects. The reduction in matrix stiffness, in this case, enhanced the fatigue strength in tension–tension load (R = 0.1) when compared to the specimens in normal conditions. The opposite occurs for the specimens loaded with stress ratio of R = −1, in which the delamination mechanisms changed during the loading reversion from tension to compression that promoted early delamination. Therefore, this process reduced the fatigue life of the specimens under hygrothermal condition. Then, by fractographic investigation, it was verified fracture patterns that regard to mode II damage in R = −1, in which mode II fracture toughness is known to decrease in the presence of water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.Y. Shiino, R.C. Alderliesten, M. Vicente, M. Odila, and H. Cioffi, A Brief Discussion on (Pure Mode I) Fatigue Crack Growth Rate Data in 5HS Weave Fabric Composites : Evaluation of Empirical Relations, Int. J. Fatigue, 2016, 84, p 97–103

    Article  Google Scholar 

  2. L. Yao, R. Alderliesten, M. Zhao, and R. Benedictus, Bridging Effect on Mode I, Fatigue Delamination Behavior in Composite Laminates, Compos. Part A Appl. Sci. Manuf., 2014, 63, p 103–109. https://doi.org/10.1016/j.compositesa.2014.04.007

    Article  CAS  Google Scholar 

  3. S.N. Wosu, D. Hui, and L. Daniel, Hygrothermal Effects on the Dynamic Compressive Properties of graphite/Epoxy Composite Material, Compos. Part B Eng., 2012, 43, p 841–855. https://doi.org/10.1016/j.compositesb.2011.11.045

    Article  CAS  Google Scholar 

  4. D. Scida, Z. Aboura, and M. Benzeggagh, The Effect of Ageing on the Damage Events in Woven-Fibre Composite Materials Under Different Loading Conditions, Compos. Sci. Technol., 2002, 62, p 551–557. https://doi.org/10.1016/S0266-3538(01)00147-6

    Article  CAS  Google Scholar 

  5. E. Vauthier, J.C. Abry, T. Bailliez, and A. Chateauminois, Interactions Between Hygrothermal Ageing and Fatigue Damage in Unidirectional Glass/Epoxy Composites, Compos. Sci. Technol., 1998, 58, p 687–692. https://doi.org/10.1016/S0266-3538(97)00149-8

    Article  CAS  Google Scholar 

  6. A. Zhang, H. Lu, and D. Zhang, Synergistic Effect of Cyclic Mechanical Loading and Moisture Absorption on the Bending Fatigue Performance of Carbon/Epoxy Composites, J. Mater. Sci., 2014, 49, p 314–320. https://doi.org/10.1007/s10853-013-7707-9

    Article  CAS  Google Scholar 

  7. C. Zhang, W.K. Binienda, G.N. Morscher, R.E. Martin, and L.W. Kohlman, Experimental and FEM Study of Thermal Cycling Induced Microcracking in Carbon/Epoxy Triaxial Braided Composites, Compos. Part A, 2013, 46, p 34–44. https://doi.org/10.1016/j.compositesa.2012.10.006

    Article  CAS  Google Scholar 

  8. C. Xiaoquan, Y. Baig, and L. Zhonghai, Effects of Hygrothermal Environmental Conditions on Compressive Strength of CFRP Stitched Laminates, J. Reinf. Plast. Compos., 2010, 30, p 110–122. https://doi.org/10.1177/0731684410384894

    Article  CAS  Google Scholar 

  9. F. McBagonluri, K. Garcia, M. Hayes, K.N.E. Verghese, and J.J. Lesko, Characteristics of Fatigue and Combined Environments on Durability Performance of Glass/Vinylester Composites for Infrastructure, Int. J. Fatigue, 2000, 22, p 53

    Article  CAS  Google Scholar 

  10. Y. Shan and K. Liao, Environmental Fatigue of Unidirectional Glass ± Carbon Fiber Reinforced Hybrid Composite, Compos. Part B Eng, 2001, 32, p 355–363. https://doi.org/10.1016/S1359-8368(01)00014-2

    Article  Google Scholar 

  11. N.L. Batista, K. Iha, and E.C. Botelho, Evaluation of Weather Influence on Mechanical and Viscoelastic Properties of polyetherimide/Carbon Fiber Composites, J. Reinf. Plast. Compos., 2013, 32, p 863–874. https://doi.org/10.1177/0731684413482994

    Article  CAS  Google Scholar 

  12. X. Cheng, S. Liu, J. Zhang, X. Guo, J. Bao, Hygrothermal Effects on Mechanical Behavior of Scarf Repaired Carbon-Epoxy Laminates Subject to Axial Compression Loads: Experiment and Numerical Simulation, Polym. Compos., 2018, 39, p 904–914. https://doi.org/10.1002/pc.24017.

    Article  CAS  Google Scholar 

  13. S. Roy, W. Xu, S. Patel, and S. Case, Modeling of Moisture Diffusion in the Presence of Bi-axial Damage in Polymer Matrix Composite Laminates, Int. J. Solids Struct., 2001, 38, p 7627–7641

    Article  Google Scholar 

  14. T. Vo, K. Vora, and B. Minaie, Effects of Postcure Temperature Variation on Hygrothermal-Mechanical Properties of an Out-of-Autoclave Polymer Composite, J. Appl. Polym. Sci., 2013, 130, p 3090–3097. https://doi.org/10.1002/app.39541

    Article  CAS  Google Scholar 

  15. S. Choi, A. Phantu, and E. Douglas, Evaluation of the Complex Hygrothermal Behaviors of Epoxy-Amine Systems, J. Appl. Polym. Sci., 2012, 125, p 3778–3787. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  16. M.K. Bhuyan, M.S. Bhuyan, J.I. Rodriguez-Devora, and M. Yanez, Delamination Behavior of Bidirectional S2 Glass Epoxy Laminated Composite Due to Combined Moisture and Temperature Cyclic Loading, J. Compos. Mater., 2012, https://doi.org/10.1177/0021998312466120

    Article  Google Scholar 

  17. T. Brocks, M. Odila, H. Cioffi, H. Jacobus, and C. Voorwald, Effect of Fiber Surface on Flexural Strength in Carbon Fabric Reinforced Epoxy Composites, Appl. Surf. Sci., 2013, 274, p 210–216. https://doi.org/10.1016/j.apsusc.2013.03.018

    Article  CAS  Google Scholar 

  18. H. Liu, M. Li, Z.Y. Lu, Z.G. Zhang, C.C. Sun, and T. Cui, Multiscale Simulation Study on the Curing Reaction and the Network Structure in a Typical Epoxy System, Macromolecules, 2011, 44, p 8650–8660. https://doi.org/10.1021/ma201390k

    Article  CAS  Google Scholar 

  19. R. Zenasni, A.S. Bachir, I. Viña, A. Argüelles, and J. Viña, Effect of Hygrothermomechanical Aging on the Interlaminar Fracture Behavior of Woven Fabric Fiber/PEI, Composite Materials, J. Thermoplast. Compos. Mater., 2006, 19, p 385–398. https://doi.org/10.1177/0892705706059743

    Article  CAS  Google Scholar 

  20. R.L. Fernandes, M.F.S.F. de Moura, and R.D.F. Moreira, Effect of Moisture on Pure Mode I, and II, Fracture Behaviour of Composite Bonded Joints, Compos. Part B Eng., 2016, 68, p 30–38. https://doi.org/10.1016/j.compositesb.2016.04.022

    Article  CAS  Google Scholar 

  21. R. Selzer and K. Friedrich, Influence of Water Up-Take on Interlaminar Fracture Properties of Carbon Fibre-Reinforced Polymer Composites, J. Mater. Sci., 1995, 30, p 334–338. https://doi.org/10.1007/BF00354392

    Article  CAS  Google Scholar 

  22. C. Wu and W. Xu, Atomistic Simulation Study of Absorbed Water Influence on Structure and Properties of Crosslinked Epoxy Resin, Polymer (Guildf), 2007, 48, p 5440–5448. https://doi.org/10.1016/j.polymer.2007.06.038

    Article  CAS  Google Scholar 

  23. S. Choi and E.P. Douglas, Complex Hygrothermal Effects on the Glass Transition of an Epoxy-Amine Thermoset, ACS Appl. Mater. Interfaces, 2010, 2, p 934–941. https://doi.org/10.1021/am9009346

    Article  CAS  Google Scholar 

  24. ASTM D5229/D5229M-92, Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials, ASTM Int, West Conshohocken, 2004

    Google Scholar 

  25. ASTM D7615/D7615M-11, Standard Practice for Open-Hole Fatigue Response of Polymer Matrix Composite, ASTM Int, West Conshohocken, 2013, p 1–8https://doi.org/10.1520/d7615

    Book  Google Scholar 

  26. ASTM D6484/D6484M-14, Standard Test Method for Open-Hole Compressive Strength of Polymer Matrix Composite Laminates, ASTM Int, West Conshohocken, 2014

    Google Scholar 

  27. A. Rotem, Load Frequency Effect on the Fatigue Strength of Isotropic Laminates, Compos. Sci. Technol., 1993, 46, p 129–138

    Article  CAS  Google Scholar 

  28. C.L. Soles and A.F. Yee, Discussion of the Molecular Mechanisms of Moisture Transport In Epoxy Resins, J. Polym. Sci. Part B: Polym. Phys., 2000, 38, p 792–802. 10.1002/(SICI)1099-0488(20000301)38:5<792::AID-POLB16>3.0.CO;2-H

    Article  CAS  Google Scholar 

  29. M.Y. Shiino, L.M. De Camargo, M.O.H. Cioffi, H.C.J. Voorwald, E.C. Ortiz, and M.C. Rezende, Correlation of Microcrack Fracture Size with Fatigue Cycling on Non-crimp Fabric/RTM6 Composite in the Uniaxial Fatigue Test, Compos. Part B Eng., 2012, 43, p 2244–2248. https://doi.org/10.1016/j.compositesb.2012.01.074

    Article  CAS  Google Scholar 

  30. R. Selzer and K. Friedrich, Mechanical Properties and Failure Behaviour of Carbon Fibre-Reinforced Polymer Composites Under the Influence of Moisture, Compos. Part A Appl. Sci. Manuf., 1997, 28, p 595–604. https://doi.org/10.1016/S1359-835X(96)00154-6

    Article  Google Scholar 

  31. P. Moy and F.E. Karasz, Epoxy–Water Interactions, Polym. Eng. Sci., 1980, 20, p 315–319. https://doi.org/10.1002/pen.760200417

    Article  CAS  Google Scholar 

  32. R. Jones, Mechanics of Composite Materials, McGraw-Hill, New York, 1975

    Google Scholar 

  33. L. Amaral, L. Yao, R. Alderliesten, and R. Benedictus, The Relation Between the Strain Energy Release in Fatigue and Quasi-Static Crack Growth, Eng. Fract. Mech., 2015, 145, p 86–97. https://doi.org/10.1016/j.engfracmech.2015.07.018

    Article  Google Scholar 

  34. L.R. Leblanc and G. LaPlante, Experimental Investigation and Finite Element Modeling of Mixed-Mode Delamination in a Moisture-Exposed Carbon/Epoxy Composite, Compos. Part A Appl. Sci. Manuf., 2016, 81, p 202–213. https://doi.org/10.1016/j.compositesa.2015.11.017

    Article  CAS  Google Scholar 

  35. M.Y. Shiino, R.C. Alderliesten, M.V. Donadon, and M.O.H. Cioffi, The Relationship Between Pure Delamination Modes I, and II, on the Crack Growth Rate Process in Cracked Lap Shear Specimen (CLS) of 5 Harness Satin Composites, Compos. Part A Appl. Sci. Manuf., 2015, 78, p 350–357. https://doi.org/10.1016/j.compositesa.2015.08.024

    Article  CAS  Google Scholar 

  36. E.S. Greenhalgh, C. Rogers, and P. Robinson, Fractographic Observations on Delamination Growth and the Subsequent Migration Through the Laminate, Compos. Sci. Technol., 2009, 69, p 2345–2351. https://doi.org/10.1016/j.compscitech.2009.01.034

    Article  CAS  Google Scholar 

  37. M. Charalambides, A.J. Kinloch, Y. Wang, and J.G. Williams, On the Analysis of Mixed-Mode Failure, Int. J. Fract., 1992, 54, p 269–291

    CAS  Google Scholar 

  38. M. Blikstad and T.R. Johannesson, The Influence of Moisture and Toughened Resin on the Mixed Mode Fracture of Unidirectional Graphite/Epoxy Laminates, J. Compos. Technol. Res., 2018, 7, p 115–120

    Google Scholar 

  39. T. Lorriot, G. Marion, R. Harry, and H. Wargnier, Onset of Free-Edge Delamination in Composite Laminates Under Tensile Loading, Compos. Part B Eng., 2003, 34, p 459–471. https://doi.org/10.1016/S1359-8368(03)00016-7

    Article  CAS  Google Scholar 

  40. A. Hosoi, N. Sato, Y. Kusumoto, K. Fujiwara, and H. Kawada, High-Cycle Fatigue Characteristics of Quasi-Isotropic CFRP Laminates Over 108 Cycles (Initiation and Propagation of Delamination Considering Interaction with Transverse Cracks), Int. J. Fatigue, 2010, 32, p 29–36. https://doi.org/10.1016/j.ijfatigue.2009.02.028

    Article  CAS  Google Scholar 

  41. A. Rotem, The Fatigue Behavior of Composite Laminates Under Various Mean Stresses, Compos. Struct., 1991, 17, p 113–126. https://doi.org/10.1016/0263-8223(91)90065-7

    Article  Google Scholar 

  42. C. Soutis, Damage Tolerance of Open-Hole CFRP Laminates Loaded in Compression, Compos. Eng., 1994, 4, p 317–327

    Article  CAS  Google Scholar 

  43. C. Soutis, N.A. Fleck, and P.A. Smith, Failure Prediction Technique for Compression Loaded Carbon Fibre-Epoxy Laminate with Open Holes, J. Compos. Mater., 1991, 25, p 1476–1498. https://doi.org/10.1177/002199839102501106

    Article  Google Scholar 

  44. M.Y. Shiino, M.O.H. Cioffi, H.C.J. Voorwald, and E.C. Ortiz, Tricot Stitched Carbon Fiber Reinforced Polymer Composite Laminates Manufactured by Resin Transfer Molding Process: C-Scan and Flexural Analysis, J. Compos. Mater., 2013, 47, p 1695–1703. https://doi.org/10.1177/0021998312450928

    Article  CAS  Google Scholar 

  45. M.Y. Shiino, T.S. Pelosi, M.O.H. Cioffi, and M.V. Donadon, The Role of Stitch Yarn on the Delamination Resistance in Non-crimp Fabric: Chemical and Physical Interpretation, J. Mater. Eng. Perform., 2017, https://doi.org/10.1007/s11665-016-2460-2

    Article  Google Scholar 

  46. N.A. Fleck and C. Soutis, Static Compression Failure of Carbon Fibre T800/924C Composite Plate with a Single Hole, J. Compos. Mater., 1990, 24, p 536–558

    Article  Google Scholar 

  47. A. Jumahat, C. Soutis, F.R. Jones, and A. Hodzic, Fracture Mechanisms and Failure Analysis of Carbon Fibre/Toughened Epoxy Composites Subjected to Compressive Loading, Compos. Struct., 2010, 92, p 295–305. https://doi.org/10.1016/j.compstruct.2009.08.010

    Article  Google Scholar 

  48. M. Todo, T. Nakamura, and K. Takahashi, Effects of Moisture Absorption on the Dynamic Interlaminar Fracture Toughness of Carbon Epoxy Composites, J. Compos. Mater., 2000, 34, p 630–648. https://doi.org/10.1177/002199830003400801

    Article  CAS  Google Scholar 

  49. A. Rotem and H.G. Nelson, Failure of a Laminated Composite Under Tension-Compression Fatigue Loading, Compos. Sci. Technol., 1989, 36, p 45–62. https://doi.org/10.1016/0266-3538(89)90015-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from FAPESP, through process Nos. 2012/07646-0 and 2011/01937-0 and CNPq Grant 300990/2013-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Yutaka Shiino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiino, M.Y., de Siqueira, G.S.M., Cioffi, M.O.H. et al. Hygrothermal Effect on Composites Under In-Plane Fatigue at Stress Ratios of R = −1 and R = 0.1: An Analysis of Quasi-Isotropic Stitched Carbon Fibers. J. of Materi Eng and Perform 27, 5964–5972 (2018). https://doi.org/10.1007/s11665-018-3584-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3584-3

Keywords

Navigation