Surface Modification of 304 Stainless Steel by Electro-Spark Deposition


Electro-spark deposition (ESD) is a pulsed microwelding process that is used to apply surface coatings for the repair of damaged high value and precision products or modify their surfaces for specific properties. The low heat input, minimal heat-affected zone and the ability to form metallurgical bonding of coating to substrate are major advantages of the ESD process. Many applications require the components to have excellent surface performance, such as wear and corrosion resistance. ESD technique provides an approach to modify the component surface without compromising the bulk properties. In this study, surface modifications of 304 stainless steel by ESD were investigated. Titanium carbide (TiC), tungsten carbide (WC) and molybdenum (Mo) were employed as coating materials. Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX) analysis were conducted to characterize the microstructure and composition of the coatings. The coatings thicknesses were all around 40 µm. The results showed that TiC and WC coatings showed a dramatic increase in the microhardness, up to 5 times. WC coating improved the wear resistance by more than 5 times, while TiC and Mo coatings also improved it by approximately 2.5 times. Electro-chemical tests were conducted to investigate the corrosion resistance of the coatings. Mo coating exhibited a significant improvement in the corrosion resistance in 5% NaCl solutions, corroding 350 times slower than stainless steel. Synchrotron x-ray diffraction was performed to investigate the microstructure changes of the Mo-coated sample. Heat treatment was also carried out to investigate the corrosion behavior of Mo-coated 304 stainless steel at elevated service temperature in air or argon.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Z. Chen and Y. Zhou, Surface Modification of Resistance Welding Electrode by Electro-Spark Deposited Composite Coatings: Part I. Coating Characterization, Surf. Coat. Technol., 2006, 201(3-4), p 1503–1510

    Article  Google Scholar 

  2. 2.

    K.R.C.S. Raju, N.H. Faisal, D.S. Rao, S.V. Joshi, and G. Sundararajan, Electro-Spark Coatings for Enhanced Performance of Twist Drills, Surf. Coat. Technol., 2008, 202(9), p 1636–1644

    Article  Google Scholar 

  3. 3.

    A.V. Kolomeichenko and I.S. Kuznetsov, Tribotechnical Properties of Electrospark Coatings of Amorphous and Nanocrystalline Iron Alloys, J. Frict. Wear, 2014, 35(6), p 501–504

    Article  Google Scholar 

  4. 4.

    C. Luo, X.A. Xiong, and S.J. Dong, TiB2/Ni Coatings on Surface of Copper Alloy Electrode Prepared by Electrospark Deposition, Trans. Nonferrous Met. Soc. China, 2011, 21(2), p 317–321

    Article  Google Scholar 

  5. 5.

    A.V. Ribalko, O. Sahin, and K. Korkmaz, A Modified Electrospark Alloying Method for Low Surface Roughness, Surf. Coat. Technol., 2009, 203(23), p 3509–3515

    Article  Google Scholar 

  6. 6.

    P. Wang, L. Ma, Z.J. Liang, and J.J. Zhao, Preparation and Mechanical Properties of Two Nickel Base Alloy Coatings Achieved by Electrospark Deposition, Acta Metall. Sin. (Engl. Lett.), 2011, 24(4), p 309–314

    Google Scholar 

  7. 7.

    R.N. Johnson and G.L. Sheldon, Advances in the Electrospark Deposition Coating Process, J. Vac. Sci. Technol., A, 1986, 4(6), p 2740–2746

    Article  Google Scholar 

  8. 8.

    J.S. Wang, H.M. Meng, H.Y. Yu, Z.S. Fan, and D.B. Sun, Wear Characteristics of Spheroidal Graphite Roll WC-8Co Coating Produced by Electro-Spark Deposition, Rare Met., 2010, 29(2), p 174–179

    Article  Google Scholar 

  9. 9.

    Y.G. Tkachenko, D.Z. Yurchenko, V.F. Britun, L.P. Isaeva, and V.T. Varchenko, Structure and Properties of Wear-Resistant Spark-Deposited Coatings Produced with a Titanium Carbide Alloy Anode, Powder Metall. Met. C+, 2013, 52(5-6), p 306–313

    Article  Google Scholar 

  10. 10.

    S.H. Bae, H.D. Lim, W.J. Jung, W. Gil, E.C. Jeon, S.G. Lee, H.J. Lee, I.S. Kim, and H.W. Lee, A Study on the Mechanical Properties of Duplex Stainless Steel Weldment According to Mo Contents, Korean J. Met. Mater., 2012, 50(9), p 645–651

    Article  Google Scholar 

  11. 11.

    M.M. Larijani and N. Bafandeh, Corrosion Behaviors of Mo Coating on Stainless Steel 316 Substrates Implanted by Different Nitrogen Ion Fluences, Eur. Phys. J. Appl. Phys., 2014, 65(3), p 31301

    Article  Google Scholar 

  12. 12.

    A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, and D. Hausermann, Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan, High Press. Res., 1996, 14(4-6), p 235–248

    Article  Google Scholar 

  13. 13.

    J.P. Oliveira, R.M. Miranda, N. Schell, and F.M.B. Fernandes, High Strain and Long Duration Cycling Behavior of Laser Welded NiTi Sheets, Int. J. Fatigue, 2016, 83, p 195–200

    Article  Google Scholar 

  14. 14.

    J.P. Oliveira, F.M.B. Fernandes, N. Schell, and R.M. Miranda, Martensite Stabilization During Superelastic Cycling of Laser Welded NiTi Plates, Mater. Lett., 2016, 171, p 273–276

    Article  Google Scholar 

  15. 15.

    A.A. Burkov, Influence of Carbon Content of WC-Co Electrode Materials on the Wear Resistance of Electrospark Coatings, J. Surf. Eng. Mater. Adv. Technol., 2012, 02(02), p 65–70

    Google Scholar 

  16. 16.

    A. International, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, 2015

  17. 17.

    M.M. Larijani and N. Bafandeh, Corrosion Behaviors of Mo Coating on Stainless Steel 316 Substrates Implanted by Different Nitrogen Ion Fluences, Eur. Phys. J. Appl. Phys., 2014, 65(3), p 31301

    Article  Google Scholar 

  18. 18.

    H. Demiroren, M. Aksoy, T. Yildiz, and S. Buytoz, The Corrosion Characterization of a Ferritic Stainless Steel with Mo Addition in H2SO4 and HCI, Acid Solutions, Prot. Met. Phys. Chem., 2009, 45(5), p 628–634

    Article  Google Scholar 

  19. 19.

    S.H. Bae and H.W. Lee, Effect of Mo Contents on Corrosion Behaviors of Welded Duplex Stainless Steel, Met. Mater. Int., 2013, 19(3), p 563–569

    Article  Google Scholar 

  20. 20.

    H. Hwang and Y. Park, Effects of Heat Treatment on the Phase Ratio and Corrosion Resistance of Duplex Stainless Steel, Mater. Trans., 2009, 50(6), p 1548–1552

    Article  Google Scholar 

  21. 21.

    H.-Y. Liou, W.-T. Tsai, Y.-T. Pan, and R.-I. Hsieh, Effects of Alloying Elements on the Mechanical Properties and Corrosion Behaviors of 2205 Duplex Stainless Steels, J. Mater. Eng. Perform., 2001, 10(2), p 231–241

    Article  Google Scholar 

  22. 22.

    J. Padgurskas, R. Kreivaitis, R. Rukuza, V. Mihailov, V. Agafii, R. Kriukiene, and A. Baltusnikas, Tribological Properties of Coatings Obtained by Electro-Spark Alloying C45 Steel Surfaces, Surf. Coat. Technol., 2017, 311, p 90–97

    Article  Google Scholar 

  23. 23.

    G. Krauss, Steels: Processing, Structure and Performance, ASM International, Materials Park, 2005

    Google Scholar 

  24. 24.

    P. Paulraj and R. Garg, Effect of Intermetallic Phases on Corrosion Behavior and Mechanical Properties of Duplex Stainless Steel and Super-Duplex Stainless Steel, Adv. Sci. Technol. Res., 2015, 9(27), p 87–105

    Article  Google Scholar 

  25. 25.

    A.Y. Chen, W.F. Hu, D. Wang, Y.K. Zhu, P. Wang, J.H. Yang, X.Y. Wang, J.F. Gu, and J. Lu, Improving the Intergranular Corrosion Resistance of Austenitic Stainless Steel by High Density Twinned Structure, Scr. Mater., 2017, 130, p 264–268

    Article  Google Scholar 

  26. 26.

    H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, Elsevier, Amsterdam, 2006

    Google Scholar 

  27. 27.

    G. Fargas, A. Mestra, and A. Mateo, Effect of Sigma Phase on the Wear Behavior of a Super Duplex Stainless Steel, Wear, 2013, 303(1-2), p 584–590

    Article  Google Scholar 

  28. 28.

    Z.Q. Feng, Y.H. Yang, and J. Wang, Effect of Mn Addition on the Precipitation and Corrosion Behaviour of 22% Cr Economical Duplex Stainless Steel After Isothermal Aging at 800 °C, J. Alloys Compd., 2017, 699, p 334–344

    Article  Google Scholar 

Download references


Financial support from the National Sciences and Engineering Research Council (NSERC), Ontario Centres of Excellence (OCE) and Huys Industries Ltd is gratefully acknowledged. The authors thank TechnoCoat Co., Ltd for materials support. The authors would like to thank Dr. Joyce Koo and Dr. Mehrdad Iravani from University of Waterloo, for wear test experiment and valuable discussions. Mr. Dominic Leung and Kevin Chan from Huys Industries are highly acknowledged for their technical support.

Author information



Corresponding author

Correspondence to Z. Jiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 268 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiao, Z., Peterkin, S., Felix, L. et al. Surface Modification of 304 Stainless Steel by Electro-Spark Deposition. J. of Materi Eng and Perform 27, 4799–4809 (2018).

Download citation


  • corrosion resistance
  • electro-spark deposition
  • stainless steel
  • surface modification