Skip to main content
Log in

Effect of Deformation Temperature on the Microstructure and Mechanical Properties of High-Strength Low-Alloy Steel During Hot Compression

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of high-strength low-alloy steel were investigated at deformation temperatures of 800-1100 °C and strain rates of 0.1-10 s−1 using an MMS-200 thermal mechanical simulator. The results indicated that the increased deformation processes observed between the starting and finishing temperatures during hot compression testing caused a polygonal ferrite transformation in the material. The polygonal ferrite grain sizes increased with increasing transformation temperatures and gradually grew larger at higher deformation temperatures. Widmanstätten ferrite and acicular ferrite were also formed at high temperatures from 1000-1100 °C, which accordingly led to an increase in Vickers microhardness. In addition, the flow stress in the material increased with an increase in the strain and a decrease in the deformation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.R. Paules, Practical Considerations in Microalloying with Vanadium, Niobium, or Titanium, in Proceedings of the International Symposium on Micro-alloyed Vanadium Steels, Cracow, p. 19–32 (1990)

  2. B. Beidokhti, A. Koukabi, and A. Dolati, Effect of Titanium Addition on the Microstructure and Inclusion Formation in Submerged Arc Welded HSLA Pipeline Steel, J. Mater. Proc. Technol., 2009, 209, p 4027–4035

    Article  Google Scholar 

  3. B.K. Show, R. Veerababu, R. Balamuralikrishnan, and G. Malakondaiah, Effect of Vanadium and Titanium Modification on the Microstructure and Mechanical Properties of a Microalloyed HSLA Steel, Mater. Sci. Eng. A, 2010, 527, p 1595–1604

    Article  Google Scholar 

  4. G.Y. Qiao, F.R. Xiao, X.B. Zhang, Y.B. Cao, and L. Bo, Effects of Contents of Nb and C on Hot Deformation Behaviors of High Nb X80 Pipeline Steels, Nonferrous Met. Soc. China, 2009, 19, p 1395–1399

    Article  Google Scholar 

  5. B. Tanguy, T.T. Luu, G. Perrin, A. Pineau, and J. Besson, Plastic and Damage Behaviour of a High Strength X100 Pipeline Steel: Experiments and Modelling, Int. J. Press. Vessel. Pip., 2008, 85, p 322–335

    Article  Google Scholar 

  6. W. Wang, Y. Shan, and K. Yang, Study of High Strength Pipeline Steels with Different Microstructures, Mater. Sci. Eng. A, 2009, 502, p 38–44

    Article  Google Scholar 

  7. F. Xiao, B. Liao, D. Ren, Y. Shan, and K. Yang, Acicular Ferritic Microstructure of a Low-Carbon Mn-Mo-Nb Microalloyed Pipeline Steel, Mater. Charact., 2005, 54, p 305–314

    Article  Google Scholar 

  8. C. Ouchi, Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Processes, ISIJ Int., 2001, 41, p 542–553

    Article  Google Scholar 

  9. H. Jun, X.D. Lin, X. Hui, H.G. Xiu, and R.D.K. Misra, Microstructure and Mechanical Properties of TMCP Heavy Plate Microalloyed Steel, Mater. Sci. Eng. A, 2014, 607, p 122–131

    Article  Google Scholar 

  10. Y. Chen, D. Zhang, Y. Liu, H. Li, and D. Xu, Effect of Dissolution and Precipitation of Nb on the Formation of Acicular Ferrite/Bainite Ferrite in Low-Carbon HSLA Steels, Mater. Charact., 2013, 84, p 232–239

    Article  Google Scholar 

  11. Y.H. Bae, J.S. Lee, J.K. Choi, W.Y. Choo, and S.H. Hong, Effects of Austenite Conditioning on Austenite/Ferrite Phase Transformation of HSLA Steel, Mater. Trans., 2004, 45, p 137–142

    Article  Google Scholar 

  12. Y.C. Liu, Y. Shao, C.X. Liu, C. Yan, and D.T. Zhang, Microstructure Evolution of HSLA Pipeline Steels after Hot Uniaxial Compression, Metals, 2016, 9, p 721

    Google Scholar 

  13. G. Krauss, Steels: Processing, Structure, and Performance, in ASM International, p. 118–120 (2005)

  14. Y.C. Lin, M.S. Chen, and J. Zhong, Microstructural Evolution in 42CrMo Steel During Compression at Elevated Temperatures, Comput. Mater. Sci., 2008, 62, p 2132–2135

    Google Scholar 

  15. S. Mandal, A.K. Bhaduri, and V.S. Sarma, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43, p 2056–2068

    Article  Google Scholar 

  16. G.Z. Quan, Y. Wang, Y.Y. Liu, and J. Zhou, Effect of Temperatures and Strain Rates on the Average Size of Grains Refined by Dynamic Recrystallization for as-Extruded 42CrMo Steel, Mater. Res., 2013, 16, p 1092–1105

    Article  Google Scholar 

  17. S.C. Hong, S.H. Lim, H.S. Hong, K.J. Lee, D.H. Shin, and K.S. Lee, Effects of Nb on Strain Induced Ferrite Transformation in C-Mn Steel, Mater. Sci. Eng. A, 2003, 355, p 241–248

    Article  Google Scholar 

  18. R.L. Bodnar and S.S. Hansen, Effects of Widmanstätten Ferrite on the Mechanical Properties of a 0.2 pct C-0.7 pct Mn Steel, Metall. Mater. Trans. A, 1994, 25, p 763–773

    Article  Google Scholar 

  19. S. Abbasi and A. Shokuhfar, Prediction of Hot Deformation Behaviour of 10Cr-10Ni-5Mo-2Cu Steel, Mater. Lett., 2007, 61, p 2523–2526

    Article  Google Scholar 

  20. L.Q. Cheng, Y. Zhao, X.Q. Xu, and X.H. Liu, Dynamic Recrystallization and Precipitation Behaviors of a Kind of Low Carbon V-Microalloyed Steel, Acta. Mater. Sin., 2010, 46, p 1215–1222

    Google Scholar 

  21. X.Q. Xu, D.F. Li, S.L. Guo, and X.P. Wu, Microstructure Evolution of Zn-8Cu-0.3Ti Alloy During Hot Deformation, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1606–1612

    Article  Google Scholar 

  22. P.L. Mao, G.Y. Su, and K. Yang, Dynamic Recrystallisation of as Cast Austenite in 18-8 Stainless Steel, Mater. Sci. Technol., 2002, 18, p 892–896

    Article  Google Scholar 

  23. J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang, and R.R. Adharapurapu, Influence of Temperature and Strain Rate on the Mechanical Behavior of Three Amorphous Polymers: Characterization and Modeling of the Compressive Yield Stress, Int. J. Solids. Struct., 2006, 43, p 2318–2335

    Article  Google Scholar 

  24. S.C. Li, Y.L. Kang, G.M. Zhu, and S. Kuang, Effects of Strain Rates on Mechanical Properties and Fracture Mechanism of DP780 Dual Phase Steel, J. Mater. Eng. Perform., 2015, 24, p 2426–2434

    Article  Google Scholar 

  25. E.O. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Phys. Soc. Lond., 1951, 64B, p 747–753

    Article  Google Scholar 

  26. Y. Prawoto, N. Jasmawati, and K. Sumeru, Effect of Prior Austenite Grain Size on the Morphology and Mechanical Properties of Martensite in Medium Carbon Steel, J. Mater. Sci. Technol., 2012, 28, p 461–466

    Article  Google Scholar 

  27. S. Takaki, Review on the Hall–Petch Relation in Ferritic Steel, Mater. Sci. Forum., 2010, 654, p 11–16

    Article  Google Scholar 

  28. N. Nakada, M. Fujihara, T. Tsuchiyama, and S. Takaki, Effect of Phosphorus on Hall–Petch Coefficient in Ferritic Steel, ISIJ Int., 2011, 51, p 1169–1173

    Article  Google Scholar 

  29. P.L. Sun, E.K. Cerreta, G.T. Gray, and J.F. Bingert, The Effect of Grain Size, Strain Rate, and Temperature on the Mechanical Behavior of Commercial Purity Aluminum, Metall. Mater. Trans. A, 2006, 37A, p 2983–2994

    Article  Google Scholar 

  30. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma, Effect of Nanocrystalline and Ultrafine Grain Sizes on the Strain Rate Sensitivity and Activation Volume: Fcc Versus bcc Metals, Mater. Mater. Sci. Eng. A, 2004, 381, p 71–79

    Article  Google Scholar 

  31. F. Wang, B. Li, T.T. Gao, P. Huang, K.W. Xu, and T.J. Lu, Activation Volume and Strain Rate Sensitivity in Plastic Deformation of Nanocrystalline Ti, Surf. Coat. Technol., 2013, 228, p S254–S256

    Article  Google Scholar 

  32. D.T. Zhang, Z.X. Qiao, Y.C. Liu, J. Huo, Y. Chen, and Z.S. Yan, Effect of Austenisation Temperature on Phase Transformation in Low Carbon Microalloyed Pipeline Steel, Mater Res Innov., 2013, 17, p 200–204

    Article  Google Scholar 

  33. Y. Chen, D. Zhang, Y. Liu, H. Li, and D. Xu, Effect of Dissolution and Precipitation of Nb on the Formation of Acicular Ferrite/Bainite Ferrite in Low-Carbon HSLA Steels, Mater. Charact., 2013, 84, p 232–239

    Article  Google Scholar 

  34. M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W.J. Poole, In Situ Measurement and Modelling of Austenite Grain Growth in a Ti/Nb Microalloyed Steel, Acta Mater., 2012, 60, p 1015–1026

    Article  Google Scholar 

  35. U. Trdan, M. Skarba, and J. Grum, Laser Shock Peening Effect on the Dislocation Transitions and Grain Refinement of Al-Mg-Si Alloy, Mater. Charact., 2014, 97, p 57–68

    Article  Google Scholar 

  36. C. Jang, H. Jang, J.D. Hong, H. Cho, T.S. Kim, and J.G. Lee, Environmental Fatigue of Metallic Materials in Nuclear Power Plants–A Review of KOREAN TEST PROGRAMS, Nucl. Eng Technol., 2013, 45, p 929–940

    Article  Google Scholar 

  37. A.G. Kostryzhev, O.O. Marenych, C.R. Killmore, and E.V. Pereloma, Strengthening Mechanisms in Thermomechanically Processed NbTi-Microalloyed Steel, Metall. Mater. Tran. A., 2015, 46, p 3470–3480

    Article  Google Scholar 

  38. G. Ge, L. Zhang, J. Xin, J. Lin, M. Aindow, and L. Zhang, Constitutive Modeling of High Temperature Flow Behavior in a Ti-45Al-8Nb-2Cr-2Mn-0.2 Y Alloy, Sci. Rep., 2018, 8, p 5453

    Article  Google Scholar 

  39. M. Belbasi, M.T. Salehi, and S.A.A.A.J. Mousavi, Hot Deformation Behavior of NiTiHf Shape Memory Alloy Under Hot Compression Test, J. Mater. Eng. Perform., 2012, 21, p 2594–2599

    Article  Google Scholar 

  40. E. Zhang, Y. Ge, and G. Qin, Hot Deformation Behavior of an Antibacterial Co-29Cr-6Mo-1.8 Cu Alloy and Its Effect on Mechanical Property and Corrosion Resistance, J. Mater. Sci. Technol., 2018, 34, p 523–533

    Article  Google Scholar 

  41. W.Y. Liu, H. Zhao, D. Li, Z.Q. Zhang, G.J. Huang, and Q. Liu, Hot Deformation Behavior of AA7085 Aluminum Alloy During Isothermal Compression at Elevated Temperature, Mater. Sci. Eng. A., 2014, 596, p 176–182

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. GK2100260214 and GK2030260169) and the Department of Physics and Materials Sciences, Chiang Mai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hexin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Kingkam, W., Ning, L. et al. Effect of Deformation Temperature on the Microstructure and Mechanical Properties of High-Strength Low-Alloy Steel During Hot Compression. J. of Materi Eng and Perform 27, 4129–4139 (2018). https://doi.org/10.1007/s11665-018-3510-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3510-8

Keywords

Navigation