Skip to main content
Log in

Shear Assisted Processing and Extrusion (ShAPE™) of AZ91E Flake: A Study of Tooling Features and Processing Effects

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Charges of melt-spun AZ91E flake were indirectly extruded into tubes using Shear Assisted Processing and Extrusion (ShAPE™). The effect of instrument parameters and tool features on densification and microstructural evolution was studied. At a constant extrusion ratio, the tool rotational velocity varied from 75 to 300 rpm and was demonstrated to reduce the forge force by a factor of four. Modification of the extrusion die face with successively more aggressive scrolled features was found to enhance material flow into the extrusion orifice which led to a 30% reduction in spindle torque. Microstructure, texture and hardness are reported for the range of rpm and scroll geometries investigated. It was observed that the ShAPE™ process is able to retain the average grain size of the as-spun flake (2.5-4 μm) while simultaneously imparting strong textural alignment in the resultant tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. F. Gang, A. Wei-jiang, S. Leeflang, J. Duszczyk, and Z. Jie, Multipass Cold Drawing of Magnesium Alloy Minitubes for Biodegradable Vascular Stents, Mater. Sci. Eng. C Mater. Biol. Appl., 2013, 33(6), p 3481–3488

    Article  Google Scholar 

  2. G. Qiang, D. Dellasega, A.G. Demir, and M. Vedani, The Processing of Ultrafine-Grained Mg Tubes for Biodegradable Stents, Acta Biomater., 2013, 9(10), p 8604–8610

    Article  Google Scholar 

  3. P. Minarik, R. Kral, and M. Janecek, Effect of ECAP Processing on Corrosion Resistance of AE21 and AE42 Magnesium Alloys, Elsevier, Amsterdam, 2013, p 44–48

    Google Scholar 

  4. E.A. Nyberg, A.A. Luo, K. Sadayappan, and W. Shi, Magnesium for Future Autos, Adv. Mater. Processes, 2008, 166(10), p 35–37

    Google Scholar 

  5. M. Kiani, I. Gandikota, M. Rais-Rohani, and K. Motoyama, Design of Lightweight Magnesium Car Body Structure Under Crash and Vibration Constraints, J. Magnes. Alloys, 2014, 2(2), p 99–108

    Article  Google Scholar 

  6. T. Hilditch, D. Atwell, M. Easton, and M. Barnett, Performance of Wrought Aluminium and Magnesium Alloy Tubes in Three-Point Bending, Mater. Des., 2009, 30(7), p 2316–2322

    Article  Google Scholar 

  7. D. Li, V. Joshi, C. Lavender, M. Khaleel, and S. Ahzi, Yield Asymmetry Design of Magnesium Alloys by Integrated Computational Materials Engineering, Comput. Mater. Sci., 2013, 79, p 448–455

    Article  Google Scholar 

  8. J. Jain, W.J. Poole, C.W. Sinclair, and M.A. Gharghouri, Reducing the Tension-Compression Yield Asymmetry in a Mg-8Al-0.5Zn Alloy Via Precipitation, Scr. Mater., 2010, 62(5), p 301–304

    Article  Google Scholar 

  9. S. Asqardoust, A. Zarei-Hanzaki, S.M. Fatemi, and M. Moradjoy-Hamedani, High Temperature Deformation Behavior and Microstructural Evolutions of a High Zr Containing WE Magnesium Alloy, J. Alloys Compd., 2016, 669, p 108–116

    Article  Google Scholar 

  10. D.L. Yin, J.T. Wang, J.Q. Liu, and X. Zhao, On Tension–Compression Yield Asymmetry in an Extruded Mg-3Al-1Zn Alloy, J. Alloys Compd., 2009, 478(1–2), p 789–795

    Article  Google Scholar 

  11. S.M. Yin, C.H. Wang, Y.D. Diao, S.D. Wu, and S.X. Li, Influence of Grain Size and Texture on the Yield Asymmetry of Mg-3Al-1Zn Alloy, J. Mater. Sci. Technol., 2011, 27(1), p 29–34

    Article  Google Scholar 

  12. J.T. Wang, D.L. Yin, J.Q. Liu, J. Tao, Y.L. Su, and X. Zhao, Effect of Grain Size on Mechanical Property of Mg-3Al-1Zn Alloy, Scr. Mater., 2008, 59(1), p 63–66

    Article  Google Scholar 

  13. S.H. Safi-Naqvi, W.B. Hutchinson, and M.R. Barnett, Texture and Mechanical Anisotropy in Three Extruded Magnesium Alloys, Mater. Sci. Technol., 2008, 24(10), p 1283–1292

    Article  Google Scholar 

  14. S.Y. Betsofen, L.L. Rokhlin, R. Wu, A.A. Lozovan, and I.I. Voskresenskaya, Effect of Alloying Elements on the Texture and the Anisotropy of the Mechanical Properties of Magnesium Alloys with REM, Lithium, and Aluminum, Russ. Metall. Metally, 2014, 2014(11), p 920–927

    Article  Google Scholar 

  15. K. Hazeli, A. Sadeghi, M.O. Pekguleryuz, and A. Kontsos, The Effect of Strontium in Plasticity of Magnesium Alloys, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2013, 578, p 383–393

    Article  Google Scholar 

  16. B. Fanqiang, Y. Qiang, G. Kai, Q. Xin, Z. Deping, S. Wei, Z. Tian, C. Xiaopeng, S. Shicheng, T. Zongmin, L. Xiaojuan, and M. Jian, Study on the Mutual Effect of La and Gd on Microstructure and Mechanical Properties of Mg-Al-Zn Extruded Alloy, J. Alloys Compd., 2016, 688, p 1241–1250

    Article  Google Scholar 

  17. D. Hanwu, P. Fusheng, J. Bin, D. Jiahong, and Y. Qingshan, Anisotropy of the Extruded and Heat-Treated Li Containing AZ31 Magnesium Alloys, J. Alloys Compd., 2014, 590, p 233–240

    Article  Google Scholar 

  18. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Z. Yuntian, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: ten Years Later, JOM, 2016, 68(4), p 1216–1226

    Article  Google Scholar 

  19. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe Plastic Deformation (SPD) Processes for Metals, CIRP Ann. Manuf. Technol., 2008, 57(2), p 716–735

    Article  Google Scholar 

  20. S. Whalen, V. Joshi, N. Overman, D. Caldwell, C. Lavender, and T. Skszek, Scaled-Up Fabrication of Thin-Walled ZK60 Tubing Using Shear Assisted Processing and Extrusion (ShAPE), Magnesium Technology 2017, 1st ed., K. Solanki, D. Orlov, A. Singh, and N.R. Neelameggham, Ed., Springer, Berlin, 2017, p 315–322

    Chapter  Google Scholar 

  21. N.R. Overman, S.A. Whalen, M.E. Bowden, M.J. Olszta, K. Kruska, T. Clark, E.L. Stevens, J.T. Darsell, V.V. Joshi, X. Jiang, K.F. Mattlin, and S.N. Mathaudhu, Homogenization and Texture Development in Rapidly Solidified AZ91E Consolidated by Shear Assisted Processing and Extrusion (ShAPE), Mater. Sci. Eng. A, 2017, 701, p 56–68

    Article  Google Scholar 

  22. V.V. Joshi, S. Jana, D. Li, H. Garmestan, E. Nyberg, and C. Lavender, High Shear Deformation to Produce High Strength and Energy Absorption in Mg Alloys, Magnesium Technology 2014TMS 2014, 143rd Annual Meeting and Exhibition, San Diego, CA, USA, 16–20 Feb 2014, Minerals, Metals and Materials Society, p 83–88

  23. G. Grant, J. Darsell, and D. Catalini, Low Cost Fabrication of ODS Alloys, US-DOE Office of Fossil Energy, Pittsburgh, 2013

    Google Scholar 

  24. D. Catalini, D. Kaoumi, A. Reynolds, and G. Grant, Friction Consolidation of an Oxide Dispersion Strengthened Steel, 2012 Winter Meeting, USA, 11–15 Nov 2012, American Nuclear Society, p 458–461

  25. D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant, Friction Consolidation of MA956 Powder, J. Nucl. Mater., 2013, 442(1–3), p 112–118

    Article  Google Scholar 

  26. D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant, Dispersoid Distribution and Microstructure in Fe-Cr-Al Ferritic Oxide Dispersion-Strengthened Alloy Prepared by Friction Consolidation, Metall. Mater. Trans. A, 2015, 46(10), p 4730–4739

    Article  Google Scholar 

  27. X. Jiang, S.A. Whalen, J.T. Darsell, S.N. Mathaudhu, and N.R. Overman, Friction Consolidation of Gas-Atomized FeSi Powders for Soft Magnetic Applications, Mater. Charact., 2017, 123, p 166–172

    Article  Google Scholar 

  28. S. Whalen, S. Jana, D. Catalini, N. Overman, and J. Sharp, Friction Consolidation Processing of n-Type Bismuth-Telluride Thermoelectric Material, J. Electron. Mater., 2016, 45(7), p 3390–3399

    Article  Google Scholar 

  29. T. Altan, H.L. Gegel, and S.-I. Oh, Metal Forming: Fundamentals and Applications, American Society for Metals, Metals Park, 1995

    Google Scholar 

Download references

Acknowledgments

The authors would like to recognize US Magnesium LLC for supplying the material used in this study. Financial support for this work was awarded through the MS3 (Materials Synthesis and Simulation across Scales) Initiative at Pacific Northwest National Laboratory, a multi-program national laboratory operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830. A portion of this research was performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research. Finally, we would like to thank Karl Mattlin for his assistance with AZ91 flake production and Clyde Chamberlin and Anthony Guzman for their help with sample polishing and preparations for metallurgical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens T. Darsell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darsell, J.T., Overman, N.R., Joshi, V.V. et al. Shear Assisted Processing and Extrusion (ShAPE™) of AZ91E Flake: A Study of Tooling Features and Processing Effects. J. of Materi Eng and Perform 27, 4150–4161 (2018). https://doi.org/10.1007/s11665-018-3509-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3509-1

Keywords

Navigation