Skip to main content
Log in

Recrystallization Behavior and Super-Elasticity of a Metastable β-Type Ti-21Nb-7Mo-4Sn Alloy During Cold Rolling and Annealing

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Based on the d-electron alloy design theory, a new metastable β-type titanium alloy for biomedical applications, Ti-21Nb-7Mo-4Sn (wt.%) was designed in this article. This theory predicted this alloy was a metastable single β-type titanium alloy with low elastic modulus at room temperature, and the β-phase transition (β to α″) would be easy to occur during the cold rolling. The evolution of microstructure and mechanical properties of this alloy during cold rolling plus annealing were investigated by means of x-ray diffraction, optical microscope, transmission electron microscope and mechanical properties test. The results indicate that only β phase can be identified in this alloy before cold rolling, while a large amount of lath martensite (α″ phase) appears after cold rolling due to stress-induced martensitic transformation, which is in accordance with the prediction of the d-electron alloy design theory. The recrystallization nucleation occurs preferentially in the martensite lath region during the subsequent annealing process, and this region forms a large number of nano-crystals and microcrystals, showing that cold rolling plus annealing can become a new process for refining grains. Compared with casting and cold rolling samples, the annealing materials at 923 K for 10 min have excellent comprehensive mechanical properties with lower elastic modulus (58 GPa) and higher elastic recovery rate (35.39%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, and L.C. Zhang, Microstructure, Defects and Mechanical Behavior of Beta-Type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting, Acta Mater., 2016, 113, p 56–67

    Article  Google Scholar 

  2. L.S. Wei, H.Y. Kim, and S. Miyazaki, Effects of Oxygen Concentration and Phase Stability on Nano-Domain Structure and Thermal Expansion Behavior of Ti-Nb-Zr-Ta-O Alloys, Acta Mater., 2015, 100(3), p 313–322

    Article  Google Scholar 

  3. P. Barriobero-Vila, G. Requena, F. Warchomicka, A. Stark, N. Schell, and T. Buslaps, Phase Transformation Kinetics During Continuous Heating of a β-Quenched Ti-10 V-2Fe-3Al Alloy, J. Mater. Sci., 2015, 50(3), p 1412–1426

    Article  Google Scholar 

  4. S. Ehtemam-Haghighi, K.G. Prashanth, H. Attar, A.K. Chaubey, G.H. Cao, and L.C. Zhang, Evaluation of Mechanical and Wear Properties of Ti-xNb-7Fe Alloys Designed for Biomedical Applications, Mater. Des., 2016, 113, p 592–599

    Article  Google Scholar 

  5. M. Tane, K. Hagihara, M. Ueda, T. Nakano, and Y. Okuda, Elastic-Modulus Enhancement During Room-Temperature Aging and Its Suppression in Metastable Ti-Nb-Based Alloys with Low Body-Centered Cubic Phase Stability, Acta Mater., 2016, 102, p 373–384

    Article  Google Scholar 

  6. E. Acar, H. Tobe, I. Kaya, H. Karaca, and Y. Chumlyakov, Compressive Response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 Shape-Memory Alloys, J. Mater. Sci., 2015, 50(4), p 1924–1934

    Article  Google Scholar 

  7. M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Lattice Modulation and Superelasticity in Oxygen-Added β-Ti Alloys, Acta Mater., 2011, 59(16), p 6208–6218

    Article  Google Scholar 

  8. Y. Al-Zain, Y. Sato, H.Y. Kim, H. Hosoda, T.H. Nam, and S. Miyazaki, Room Temperature Aging Behavior of Ti-Nb-Mo-Based Superelastic Alloys, Acta Mater., 2012, 60(5), p 2437–2447

    Article  Google Scholar 

  9. S. Ehtemam-Haghighi, G.H. Cao, and L.C. Zhang, Nanoindentation Study of Mechanical Properties of Ti Based Alloys with Fe and Ta Additions, J. Alloy. Compd., 2017, 692, p 892–897

    Article  Google Scholar 

  10. L.Q. Wang, L.C. Xie, Y.T. Lv, L.C. Zhang, L.Y. Chen, Q. Meng, J. Qu, D. Zhang, and W.J. Lu, Microstructure Evolution and Superelastic Behavior in Ti-35Nb-2Ta-3Zr Alloy Processed by Friction Stir Processing, Acta Mater., 2017, 131, p 499–510

    Article  Google Scholar 

  11. L.Q. Wang, W.J. Lu, J.N. Qin, F. Zhang, and D. Zhang, Texture and Superelastic Behavior of Cold-Rolled TiNbTaZr Alloy, Mater. Sci. Eng., A, 2008, 491(1), p 372–377

    Article  Google Scholar 

  12. Y.J. Liu, H.L. Wang, S.J. Li, S.G. Wang, W.J. Wang, W.T. Hou, Y.L. Hao, R. Yang, and L.C. Zhang, Compressive and Fatigue Behavior of Beta-Type Titanium Porous Structures Fabricated by Electron Beam Melting, Acta Mater., 2017, 126, p 58–66

    Article  Google Scholar 

  13. L.Q. Wang, W.J. Lu, J.N. Qin, F. Zhang, and D. Zhang, Influence of Cold Deformation on Martensite Transformation and Mechanical Properties of Ti-Nb-Ta-Zr Alloy, J. Alloy. Compd., 2009, 469(1–2), p 512–518

    Article  Google Scholar 

  14. H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, and S. Miyazaki, Martensitic Transformation, Shape Memory Effect and Superelasticity of Ti-Nb Binary Alloys, Acta Mater., 2006, 54(9), p 2419–2429

    Article  Google Scholar 

  15. Q.Q. Wei, L.Q. Wang, Y.F. Fu, J. Qin, W. Lu, and D. Zhang, Influence of Oxygen Content on Microstructure and Mechanical Properties of Ti-Nb-Ta-Zr Alloy, Mater. Des., 2011, 32(5), p 2934–2939

    Article  Google Scholar 

  16. M. Morinaga, M. Kato, T. Kamimura, M. Fukumotom, I. Harada, K. Kubo, Theoretical design of b-type titanium alloys, in Titanium 1992, Science and Technology, Proceedings of the Seventh International Conference on Titanium, San Diego, CA (1992), pp. 276–83

  17. M. Abdel-Hady, K. Hinoshita, and M. Morinaga, General Approach to Phase Stability and Elastic Properties of β-type Ti-Alloys Using Electronic Parameters, Scr. Mater., 2006, 55(5), p 477–480

    Article  Google Scholar 

  18. Decker R F(1969) Strengthening Mechanisms in Nickel-Base Superalloys.Proc of Steel Strengthing Mech Symp, Zurich, Switzerland,May 5-6:1-24.

  19. D.C. Zhang, J.G. Lin, W.J. Jiang, M. Ma, and Z.G. Peng, Shape Memory and Superelastic Behavior of Ti-7.5Nb-4Mo-1Sn Alloy, Mater. Des., 2011, 32(8–9), p 4614–4617

    Article  Google Scholar 

  20. S.J. Dai, Y. Wang, and F. Chen, Effects of Annealing on the Microstructures and Mechanical Properties of Biomedical Cold-Rolled Ti-Nb-Zr-Mo-Sn Alloy, Mater. Charact., 2015, 104, p 16–22

    Article  Google Scholar 

  21. P.E.L. Moraes, R.J. Contieri, E.S.N. Lopes, A. Robin, and R. Caram, Effects of Sn Addition on the Microstructure, Mechanical Properties and Corrosion Behavior of Ti-Nb-Sn Alloys, Mater. Charact., 2014, 96(3), p 273–281

    Article  Google Scholar 

  22. S. Guo, J. Zhang, X. Cheng, and X. Zhao, A Metastable β-Type Ti-Nb Binary Alloy with Low Modulus and High Strength, J. Alloy. Compd., 2015, 644, p 411–415

    Article  Google Scholar 

  23. Q.K. Meng, S. Guo, Q. Liu, L. Hu, and X. Zhao, A β-Type TiNbZr Alloy with Low Modulus and High Strength for Biomedical Applications, Prog. Nat. Sci. Mater. Int., 2014, 24(2), p 157–162

    Article  Google Scholar 

  24. X.H. Cao, X.L. Cao, and Q. Zhang, Nanoscale Indentation Behavior of Pseudo-Elastic Ti-Ni Thin Films, J. Alloy. Compd., 2008, 465(1–2), p 491–496

    Article  Google Scholar 

  25. K. Gall, K. Juntunen, H.J. Maier, H. Sehitoglu, and Y.I. Chumlyakov, Instrumented Micro-Indentation of NiTi Shape-Memory Alloys, Acta Mater., 2001, 49(16), p 3205–3217

    Article  Google Scholar 

  26. R. Liu, D.Y. Li, Y.S. Xie, R. Llewellyn, and H.M. Hawthorne, Indentation Behavior of Pseudoelastic TiNi Alloy, Scripta Mater., 1999, 41(7), p 691–696

    Article  Google Scholar 

  27. W. Ni, Y.T. Cheng, and D.S. Grummon, Microscopic Superelastic Behavior of a Nickel-Titanium Alloy Under Complex Loading Conditions, Appl. Phys. Lett., 2003, 82(17), p 2811–2813

    Article  Google Scholar 

  28. M. Tane, T. Nakano, S. Kuramoto, M. Hara, and M. Niinomi, Low Young’s Modulus in Ti-Nb-Ta-Zr-O Alloys: Cold Working and Oxygen Effects, Acta Mater., 2011, 59(18), p 6975–6988

    Article  Google Scholar 

  29. L. Zhang and H. Attar, Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review, Adv. Eng. Mater., 2016, 18(4), p 463–475

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support provided by National Natural Science Foundation of China (Grant No. 51771119), Natural Science Foundation of Shanghai (Grant No. 17ZR1419600) and Scientific and Technological Key Project of Shanghai (Grant Nos. 11441900500 and 11441900501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengcang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Ma, F., Liu, P. et al. Recrystallization Behavior and Super-Elasticity of a Metastable β-Type Ti-21Nb-7Mo-4Sn Alloy During Cold Rolling and Annealing. J. of Materi Eng and Perform 27, 4100–4106 (2018). https://doi.org/10.1007/s11665-018-3476-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3476-6

Keywords

Navigation