Skip to main content
Log in

Effects of Chromium Additions upon Microstructure and Mechanical Properties of Cold Drawn Pearlitic Steel Wires

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cr-containing pearlitic steel wires were prepared through cold drawing and simulated galvanization process. Effect of chromium microalloying on microstructural and mechanical properties of the steel wires was investigated. Experimental results show that size of pearlitic colonies of the steel rods decreased as Cr content increased from 0.2 to 0.6 wt.%; meanwhile, interlamellar spacing was little affected because of isothermal phase transition in salt bath. The tensile strength of the pearlitic steel rods was increased from 1480 to 1550 MPa. The tensile strength of the Cr-containing cold drawn wires (ε = 1.58) was increased about 33%, and the torsion circle of the wires were about 15 with cleavage fracture. After annealing at 450 °C for 2 min, tensile strength of the wires increased, but torsion circle was decreased to less than 5. As the annealing time increased, the torsion circle of the steel wires with 0.2 wt.% Cr was improved to about 10 with cleavage fracture, while the torsion performance of the wires having high Cr contents remained low because of delamination fracture. The cementite platelets in Cr-containing wires turned into cementite crystal particles during cold drawing. Microstructure observation and thermal analysis have confirmed that thermal stability of cementite was enhanced with the increase of Cr content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. J. Embury and R. Fisher, The Structure and Properties of Drawn Pearlite, Acta Metall., 1966, 14(2), p 147–159

    Article  Google Scholar 

  2. G. Langford, A Study of the Deformation of Patented Steel Wire, Metall. Mater. Trans. B, 1970, 1(2), p 465–477

    Article  Google Scholar 

  3. C. Borchers and R. Kirchheim, Cold-Drawn Pearlitic Steel Wires, Prog. Mater. Sci., 2016, 82, p 405–444

    Article  Google Scholar 

  4. J. Gurland, Observations on the Fracture of Cementite Particles in a Spheroidized 1.05% C Steel Deformed at Room Temperature, Acta Metall., 1972, 20(5), p 735–741

    Article  Google Scholar 

  5. J. Toribio and E. Ovejero, Effect of Cold Drawing on Microstructure and Corrosion Performance of High-Strength Steel, Mech. Time-Depend. Mater., 1997, 1(3), p 307–319

    Article  Google Scholar 

  6. W.J. Nam, C.M. Bae, S.J. Oh, and S.-J. Kwon, Effect of Interlamellar Spacing on Cementite Dissolution During Wire Drawing of Pearlitic Steel Wires, Scr. Mater., 2000, 42(5), p 457–463

    Article  Google Scholar 

  7. M. Zelin, Microstructure Evolution in Pearlitic Steels During Wire Drawing, Acta Mater., 2002, 50(17), p 4431–4447

    Article  Google Scholar 

  8. L.C. Zhou, X.J. Hu, C. Ma, X.F. Zhou, F. Fang, and J.Q. Jiang, Effect of Pearlitic Lamella Orientation on Deformation of Pearlite Steel Wire During Cold Drawing, Acta Metall. Sin., 2015, 51(8), p 897–903

    Google Scholar 

  9. K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, and T. Takahashi, Cementite Decomposition in Heavily Drawn Pearlite Steel Wire, Scr. Mater., 2001, 44(6), p 977–983

    Article  Google Scholar 

  10. V. Gavriljuk, Decomposition of Cementite in Pearlitic Steel Due to Plastic Deformation, Mater. Sci. Eng. A, 2003, 345(1), p 81–89

    Article  Google Scholar 

  11. M. Hong, K. Hono, W. Reynolds, and T. Tarui, Atom Probe and Transmission Electron Microscopy Investigations of Heavily Drawn Pearlitic Steel Wire, Metall. Mater. Trans. A, 1999, 30(3), p 717–727

    Article  Google Scholar 

  12. Y. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, and R. Kirchheim, Atomic-Scale Mechanisms of Deformation-Induced Cementite Decomposition in Pearlite, Acta Mater., 2011, 59(10), p 3965–3977

    Article  Google Scholar 

  13. C. Borchers, T. Al-Kassab, S. Goto, and R. Kirchheim, Partially Amorphous Nanocomposite Obtained from Heavily Deformed Pearlitic Steel, Mater. Sci. Eng.: A, 2009, 502(1), p 131–138

    Article  Google Scholar 

  14. F. Fang, Y.F. Zhao, P.P. Liu, L.C. Zhou, X.J. Hu, X.F. Zhou, and Z.H. Xie, Deformation of Cementite in Cold Drawn Pearlitic Steel Wire, Mater. Sci. Eng.: A, 2014, 608, p 11–15

    Article  Google Scholar 

  15. L.C. Zhou, F. Fang, X.F. Zhou, Y.Y. Tu, Z.H. Xie, and J.Q. Jiang, Cementite Nano-Crystallization in Cold Drawn Pearlitic Wires Instigated by Low Temperature Annealing, Scr. Mater., 2016, 120, p 5–8

    Article  Google Scholar 

  16. S. Liu, F. Zhang, Z. Yang, M. Wang, and C. Zheng, Effects of Al and Mn on the Formation and Properties of Nanostructured Pearlite in High-Carbon Steels, Mater. Des., 2016, 93, p 73–80

    Article  Google Scholar 

  17. Y. Yang, J. Bae, and C. Park, Nanostructure and Mechanical Properties of Heavily Cold-Drawn Steel Wires, Mater. Sci. Eng.: A, 2009, 508(1), p 148–155

    Article  Google Scholar 

  18. S. Joung, U. Kang, S. Hong, Y. Kim, and W. Nam, Aging Behavior and Delamination in Cold Drawn And Post-Deformation Annealed Hyper-Eutectoid Steel Wires, Mater. Sci. Eng.: A, 2013, 586, p 171–177

    Article  Google Scholar 

  19. F. Fang, X.J. Hu, S.H. Chen, Z.H. Xie, and J.Q. Jiang, Revealing Microstructural and Mechanical Characteristics of Cold-Drawn Pearlitic Steel Wires Undergoing Simulated Galvanization Treatment, Mater. Sci. Eng.: A, 2012, 547, p 51–54

    Article  Google Scholar 

  20. C. Borchers, Y. Chen, M. Deutges, S. Goto, and R. Kirchheim, Carbon-Defect Interaction During Recovery and Recrystallization of Heavily Deformed Pearlitic Steel Wires, Philos. Mag. Lett., 2010, 90(8), p 581–588

    Article  Google Scholar 

  21. Y. Li, A. Kostka, P. Choi, S. Goto, D. Ponge, R. Kirchheim, and D. Raabe, Mechanisms of Subgrain Coarsening and Its Effect on the Mechanical Properties of Carbon-Supersaturated Nanocrystalline Hypereutectoid Steel, Acta Mater., 2015, 84, p 110–123

    Article  Google Scholar 

  22. F. Fang, X.J. Hu, L.C. Zhou, Z.H. Xie, and J.Q. Jiang, Effect of Vanadium on Microstructure and Property of Pearlitic Steel Wire, Mater. Res. Innov., 2015, 19(sup8), p S8-394–S8-396

    Article  Google Scholar 

  23. W.J. Nam and C.M. Bae, Void Initiation and Microstructural Changes During Wire Drawing of Pearlitic Steels, Mater. Sci. Eng. A, 1995, 203(1), p 278–285

    Article  Google Scholar 

  24. K. Han, T. Mottishaw, G. Smith, and D. Edmonds, Effects of Vanadium Addition on Nucleation and Growth of Pearlite in High Carbon Steel, Mater. Sci. Technol., 1994, 10(11), p 955–963

    Article  Google Scholar 

  25. X. Sauvage, N. Guelton, and D. Blavette, Microstructure Evolutions During Drawing of a Pearlitic Steel Containing 0.7 at.% Copper, Scr. Mater., 2002, 46(6), p 459–464

    Article  Google Scholar 

  26. F. Fang, J.H. Jiang, S.Y. Tan, A.B. Ma, and J.Q. Jiang, Characteristics of a Fast Low-Temperature Zinc Phosphating Coating Accelerated by an ECO-Friendly Hydroxylamine Sulfate, Surf. Coat. Technol., 2010, 204(15), p 2381–2385

    Article  Google Scholar 

  27. M. Tanaka, H. Saito, M. Yasumaru, and K. Higashida, Nature of Delamination Cracks in Pearlitic Steels, Scr. Mater., 2016, 112, p 32–36

    Article  Google Scholar 

  28. K. Shimizu and N. Kawabe, Size dependence of delamination of high-carbon steel wire, ISIJ Int., 2001, 41(2), p 183–191

    Article  Google Scholar 

  29. D. Park, E. Kang, and W. Nam, The Prediction of the Occurrence of the Delamination in Cold Drawn Hyper-Eutectoid Steel Wires, J. Mater. Process. Technol., 2007, 187, p 178–181

    Article  Google Scholar 

  30. Y. Chang and D. Naujock, The Relative Stabilities of Cr23C6/Cr7C3/and Cr3C2 and the Phase Relationships in Ternary Cr-Mo-C System, Metall. Trans., 1972, 3(7), p 1693–1698

    Article  Google Scholar 

  31. A. Bowman, G. Arnold, E. Storms, and N. Nereson, The Crystal Structure of Cr23C6, Acta Crystallogr. Sect. B: Struct. Crystal Chem., 1972, 28(10), p 3102–3103

    Article  Google Scholar 

  32. Y. Li, P. Choi, S. Goto, C. Borchers, D. Raabe, and R. Kirchheim, Atomic Scale Investigation of Redistribution of Alloying Elements in Pearlitic Steel Wires upon Cold-Drawing and Annealing, Ultramicroscopy, 2013, 132, p 233–238

    Article  Google Scholar 

  33. J. Takahashi, T. Tarui, and K. Kawakami, Three-Dimensional Atom Probe Analysis of Heavily Drawn Steel Wires by Probing Perpendicular to the Pearlitic Lamellae, Ultramicroscopy, 2009, 109(2), p 193–199

    Article  Google Scholar 

  34. Y. Chen, G. Csiszár, J. Cizek, X. Shi, C. Borchers, Y. Li, F. Liu, and R. Kirchheim, Defect Recovery in Severely Deformed Ferrite Lamellae During Annealing and Its Impact on the Softening of Cold-Drawn Pearlitic Steel Wires, Metallurg. Mater. Trans. A, 2016, 47(2), p 726–738

    Article  Google Scholar 

  35. J. Bee, P. Howell, and R. Honeycombe, Isothermal Transformations in Iron-Chromium-Carbon Alloys, Metall. Trans. A, 1979, 10(9), p 1207–1212

    Article  Google Scholar 

  36. S. Al-Salman, G. Lorimer, and N. Ridley, Pearlite Growth Kinetics and Partitioning in a Cr− Mn Eutectoid Steel, Metall. Mater. Trans. A, 1979, 10(11), p 1703–1709

    Article  Google Scholar 

  37. Z.-K. Liu, L. Höglund, and B. Jönsson, An Experimental and Theoretical Study of Cementite Dissolution in an Fe-Cr-C Alloy, Metall. Trans. A, 1991, 22(8), p 1745–1752

    Article  Google Scholar 

  38. G. Miyamoto, H. Usuki, Z.-D. Li, and T. Furuhara, Effects of Mn, Si and Cr Addition on Reverse Transformation at 1073 K from Spheroidized Cementite Structure in Fe-0.6 mass% C Alloy, Acta Mater., 2010, 58(13), p 4492–4502

    Article  Google Scholar 

  39. P. Kumar, N.P. Gurao, A. Haldar, and S. Suwas, Progressive Changes in the Microstructure and Texture in Pearlitic Steel During Wire Drawing, ISIJ Int., 2011, 51(4), p 679–684

    Article  Google Scholar 

  40. F. Fang, L. Zhou, X. Hu, X. Zhou, Y. Tu, Z. Xie, and J. Jiang, Microstructure and Mechanical Properties of Cold-Drawn Pearlitic Wires Affect by Inherited Texture, Mater. Des., 2015, 79, p 60–67

    Article  Google Scholar 

  41. Y.Y. Tu, X.H. Wang, H.L. Huang, X.F. Zhou, and J.Q. Jiang, Effect of Si on the Aging Behavior of Cold-Drawn Pearlitic Steel Wires, Metall. Mater. Trans. A, 2017, 48(2), p 659–665

    Article  Google Scholar 

  42. Y. Chen, G. Csiszár, J. Cizek, S. Westerkamp, C. Borchers, T. Ungár, S. Goto, F. Liu, and R. Kirchheim, Defects in Carbon-Rich Ferrite of Cold-Drawn Pearlitic Steel Wires, Metall. Mater. Trans. A, 2013, 44(8), p 3882–3889

    Article  Google Scholar 

  43. L.C. Zhou, F. Fang, L.F. Wang, H.Q. Chen, Z.H. Xie, and J.Q. Jiang, Torsion Delamination and Recrystallized Cementite of Heavy Drawing Pearlitic Wires After Low Temperature Annealing, Mater. Sci. Eng.: A, 2018, 713, p 52–60

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (grant no. 51371050), the ‘Six Talent Peaks’ program of Jiangsu Province (2015-XCL-004), and the Industry-University Strategic Research Fund of Jiangsu Province (BY2016076-08). The study was also partly supported by the Science and Technology Advancement Program of Jiangsu Province (Grant No. BA2017112), the Key Research Project of Jiangsu Province (Grant No. BE2015097), and Fundamental Research Funds for the Central Universities and the Scientific Research Foundation of the Graduate School of Southeast University (YBJJ1674). Dr. Z. Xie acknowledges the support of the Australian Research Council Discovery Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Wang, L., Chen, H. et al. Effects of Chromium Additions upon Microstructure and Mechanical Properties of Cold Drawn Pearlitic Steel Wires. J. of Materi Eng and Perform 27, 3619–3628 (2018). https://doi.org/10.1007/s11665-018-3464-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3464-x

Keywords

Navigation