Experimental Investigation of Mechanical Performance and Printability of Gamma-Irradiated Additively Manufactured ABS

Abstract

The work presented in this paper investigates the effects of gamma radiation on ABS in forms of irradiated 3D-printed parts, and irradiated filament used to later 3D-printed parts, using a cobalt-60 gamma irradiator. Tensile and flexural test samples were fabricated using off-the-shelf FDM 3D printers and irradiated at different dosages. Mechanical properties including elastic and flexure moduli, ultimate and flexural strength, % elongation at break, and surface hardness were evaluated, and results were compared to a control group. Evidence of cross-linking and chain scission and signs of possible oxidation of polymer caused by irradiation were found in both test groups which led to changes in mechanical properties. Moreover, it was found that ABS filament retains its printability after absorbing 15 kGy of gamma radiation and that its mechanical performance is very similar to those of irradiated samples at the same dose. Obtained results show promise for using ABS to fabricate sterile surgical instruments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing, 2nd ed., Springer, Boston, MA, 2015, p 1–2

  2. 2.

    ASTM International, F2792-12a—Standard Terminology for Additive Manufacturing Technologies, Rapid Manuf. Assoc., 2013, https://doi.org/10.1520/f2792-12a.2

    Google Scholar 

  3. 3.

    V. Petrovic, J. Vicente Haro Gonzalez, O. Jordá Ferrando, J. Delgado Gordillo, J. Ramón Blasco Puchades, and L. Portolés Griñan, Additive Layered Manufacturing: Sectors of Industrial Application Shown through Case Studies, Int. J. Prod. Res., 2011, 49(4), p 1061–1079

    Article  Google Scholar 

  4. 4.

    S. Lochner, J. Huissoon, and S. Bedi, Parametric Design of Custom Foot Orthotic Model, Comput. Des., 2012, https://doi.org/10.3722/cadaps.2012.1-11

    Google Scholar 

  5. 5.

    N. Guo and M.C. Leu, Additive Manufacturing: Technology, Applications and Research Needs, Front. Mech. Eng., 2013, 8, p 215–243

    Article  Google Scholar 

  6. 6.

    M. Vaezi, H. Seitz, and S. Yang, A Review on 3D Micro-Additive Manufacturing Technologies, Int. J. Adv. Manuf. Technol., 2013, 67, p 1721–1754

    Article  Google Scholar 

  7. 7.

    O. Ivanova, C. Williams, and T. Campbell, Additive Manufacturing (AM) and Nanotechnology: Promises and Challenges, Rapid Prototyp. J., 2011, 19(5), p 353–364. https://doi.org/10.1108/rpj-12-2011-0127

    Article  Google Scholar 

  8. 8.

    M.P. Snyder, J.J. Dunn, and E.G. Gonzalez, Effects of Microgravity on Extrusion Based Additive Manufacturing, AIAA SPACE 2013 Conference and Exposition, 2013, p 1–6, https://doi.org/10.2514/6.2013-5439

  9. 9.

    J.J. Dunn, D.N. Hutchison, A.M. Kemmer, A.Z. Ellsworth, M. Snyder, W.B. White, and B.R. Blair, 3D Printing in Space: Enabling New Markets and Accelerating the Growth of Orbital Infrastructure, Space Manufacturing 14: Critical Technologies for Space Settlement, 2010, p 29–31

  10. 10.

    A. Owens, S. Do, A. Kurtz, and O. Weck, Benefits of Additive Manufacturing for Human Exploration of Mars, 2015, https://ttu-ir.tdl.org/ttu-ir/handle/2346/64526. Accessed 24 Aug 2016

  11. 11.

    R. Hoyt, J. Cushing, J. Slostad, and G. Jimmerson, SpiderFab: An Architecture for Self-Fabricating Space Systems, Am. Inst. Aeronaut., 2013, https://doi.org/10.2514/6.2013-5509

    Google Scholar 

  12. 12.

    T. McGuire, M. Hirsch, and M. Parsons, Design for an in-Space 3D Printer, SPIE Defense+, 2016. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2523840. Accessed 24 Aug 2016

  13. 13.

    D.W. Hutmacher, Scaffolds in Tissue Engineering Bone and Cartilage, Biomaterials, 2000, 21(24), p 2529–2543. https://doi.org/10.1016/S0142-9612(00)00121-6

    Article  Google Scholar 

  14. 14.

    D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, and K.C. Tan, Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling, J. Biomed. Mater. Res., 2001, 55(2), p 203–216. 10.1002/1097-4636(200105)55:2<203::aid-jbm1007>3.0.co;2-7

    Article  Google Scholar 

  15. 15.

    D. Espalin, K. Arcaute, D. Rodriguez, F. Medina, M. Posner, and R. Wicker, Fused Deposition Modeling of Patient-specific Polymethylmethacrylate Implants, Rapid Prototyp. J., 2010, 16(3), p 164–173. https://doi.org/10.1108/13552541011034825

    Article  Google Scholar 

  16. 16.

    G.I. Salentijn, P.E. Oomen, M. Grajewski, and E. Verpoorte, Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications, Chem. Anal., 2017, https://doi.org/10.1021/acs.analchem.7b00828

    Google Scholar 

  17. 17.

    H.N. Chia and B.M. Wu, Recent Advances in 3D Printing of Biomaterials, J. Biol. Eng., 2015, 9(1), p 4. https://doi.org/10.1186/s13036-015-0001-4

    Article  Google Scholar 

  18. 18.

    F. Ning, W. Cong, J. Qiu, J. Wei, and S. Wang, Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling, Compos. Part B Eng., 2015, 80, p 369–378. https://doi.org/10.1016/j.compositesb.2015.06.013

    Article  Google Scholar 

  19. 19.

    R. Singh, S. Singh, and F. Fraternali, Development of in-House Composite Wire Based Feed Stock Filaments of Fused Deposition Modelling for Wear-Resistant Materials and Structures, Compos. Part B Eng., 2016, 98, p 244–249. https://doi.org/10.1016/j.compositesb.2016.05.038

    Article  Google Scholar 

  20. 20.

    C. Esposito Corcione, F. Gervaso, F. Scalera, F. Montagna, A. Sannino, and A. Maffezzoli, The Feasibility of Printing Polylactic Acid???nanohydroxyapatite Composites Using a Low-Cost Fused Deposition Modeling 3D Printer, J. Appl. Polym. Sci., 2017, https://doi.org/10.1002/app.44656

    Google Scholar 

  21. 21.

    S. Keating and N. Oxman, Compound Fabrication: A Multi-Functional Robotic Platform for Digital Design and Fabrication, Robot. Comput. Integr. Manuf., 2013, 29(6), p 439–448. https://doi.org/10.1016/j.rcim.2013.05.001

    Article  Google Scholar 

  22. 22.

    X. Song, Y. Pan, and Y. Chen, Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing, J. Manuf. Sci. Eng., 2015, 137(2), p 5. https://doi.org/10.1115/1.4028897

    Article  Google Scholar 

  23. 23.

    S. Ahn, M. Montero, D. Odell, S. Roundy, and P.K. Wright, Anisotropic Material Properties of Fused Deposition Modeling ABS, Rapid Prototyp. J., 2002, 8(4), p 248–257. https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  24. 24.

    A. Bellini and S. Güçeri, Mechanical Characterization of Parts Fabricated Using Fused Deposition Modeling, Rapid Prototyp. J., 2003, 9(4), p 252–264. https://doi.org/10.1108/13552540310489631

    Article  Google Scholar 

  25. 25.

    R. Anitha, S. Arunachalam, and P. Radhakrishnan, Critical Parameters Influencing the Quality of Prototypes in Fused Deposition Modelling, J. Mater. Process. Technol., 2001, https://doi.org/10.1016/s0924-0136(01)00980-3

    Google Scholar 

  26. 26.

    Q. Sun, G.M. Rizvi, C.T. Bellehumeur, and P. Gu, Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments, Rapid Prototyp. J., 2008, 14(2), p 72–80. https://doi.org/10.1108/13552540810862028

    Article  Google Scholar 

  27. 27.

    A.K. Sood, R.K. Ohdar, and S.S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31(1), p 287–295. https://doi.org/10.1016/j.matdes.2009.06.016

    Article  Google Scholar 

  28. 28.

    J.F. Rodríguez, J.P. Thomas, and J.E. Renaud, Design of Fused-Deposition ABS Components for Stiffness and Strength, J. Mech. Des., 2003, 125(3), p 545. https://doi.org/10.1115/1.1582499

    Article  Google Scholar 

  29. 29.

    B.H. Lee, J. Abdullah, and Z.A. Khan, Optimization of Rapid Prototyping Parameters for Production of Flexible ABS Object, J. Mater. Process. Technol., 2005, 169(1), p 54–61. https://doi.org/10.1016/j.jmatprotec.2005.02.259

    Article  Google Scholar 

  30. 30.

    B. Rankouhi, S. Javadpour, F. Delfanian, and T. Letcher, Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation, J. Fail. Anal. Prev., 2016, 16(3), p 467–481. https://doi.org/10.1007/s11668-016-0113-2

    Article  Google Scholar 

  31. 31.

    T. Letcher, B. Rankouhi, and S. Javadpour, Experimental Study of Mechanical Properties of Additively Manufactured ABS Plastic as a Function of Layer Parameters, Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, Houston, TX, 2015, p 1–8

  32. 32.

    M. Fernandez-Vicente, W. Calle, S. Ferrandiz, and A. Conejero, Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing, 3D Print, Addit. Manuf., 2016, 3(3), p 183–192. https://doi.org/10.1089/3dp.2015.0036

    Google Scholar 

  33. 33.

    A.R. Torrado and D.A. Roberson, Failure Analysis and Anisotropy Evaluation of 3D-Printed Tensile Test Specimens of Different Geometries and Print Raster Patterns, J. Fail. Anal. Prev., 2016, 16(1), p 154–164. https://doi.org/10.1007/s11668-016-0067-4

    Article  Google Scholar 

  34. 34.

    O.A. Mohamed, S.H. Masood, J.L. Bhowmik, M. Nikzad, and J. Azadmanjiri, Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment, J. Mater. Eng. Perform., 2016, 25(7), p 2922–2935. https://doi.org/10.1007/s11665-016-2157-6

    Article  Google Scholar 

  35. 35.

    C. Koch, L. Van Hulle, and N. Rudolph, Investigation of Mechanical Anisotropy of the Fused Filament Fabrication Process via Customized Tool Path Generation, Addit. Manuf., 2017, 16, p 138–145. https://doi.org/10.1016/j.addma.2017.06.003

    Article  Google Scholar 

  36. 36.

    C.S. Davis, K.E. Hillgartner, S.H. Han, and J.E. Seppala, Mechanical Strength of Welding Zones Produced by Material Extrusion Additive Manufacturing †, Addit. Manuf., 2017, 16, p 162–166. https://doi.org/10.1016/j.addma.2017.06.006

    Article  Google Scholar 

  37. 37.

    D. Croccolo, M. De Agostinis, and G. Olmi, Experimental Characterization and Analytical Modelling of the Mechanical Behaviour of Fused Deposition Processed Parts Made of ABS-M30, Comput. Mater. Sci., 2013, 79, p 506–518. https://doi.org/10.1016/j.commatsci.2013.06.041

    Article  Google Scholar 

  38. 38.

    T. Letcher and M. Waytashek, Material Property Testing of 3D-Printed Specimen in PLA on an Entry-Level 3D Printer, Volume 2A: Advanced Manufacturing, ASME, 2014, p V02AT02A014, https://doi.org/10.1115/imece2014-39379

  39. 39.

    B.M. Tymrak, M. Kreiger, and J.M. Pearce, Mechanical Properties of Components Fabricated with Open-Source 3-D Printers under Realistic Environmental Conditions, Mater. Des., 2014, 58, p 242–246. https://doi.org/10.1016/j.matdes.2014.02.038

    Article  Google Scholar 

  40. 40.

    E. Ulu, E. Korkmaz, K. Yay, O. Burak Ozdoganlar, and L. Burak Kara, Enhancing the Structural Performance of Additively Manufactured Objects Through Build Orientation Optimization, J. Mech. Des., 2015, 137(11), p 111410. https://doi.org/10.1115/1.4030998

    Article  Google Scholar 

  41. 41.

    M. Spoerk, F. Arbeiter, H. Cajner, J. Sapkota, and C. Holzer, Parametric Optimization of Intra-and Inter-Layer Strengths in Parts Produced by Extrusion-Based Additive Manufacturing of Poly(lactic Acid), J. Appl. Polym. Sci., 2017, 134, p 45401. https://doi.org/10.1002/app.45401

    Article  Google Scholar 

  42. 42.

    A.R. Torrado Perez, D.A. Roberson, and R.B. Wicker, Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials, J. Fail. Anal. Prev., 2014, https://doi.org/10.1007/s11668-014-9803-9

    Google Scholar 

  43. 43.

    A.R. Torrado, C.M. Shemelya, J.D. English, Y. Lin, R.B. Wicker, and D.A. Roberson, Characterizing the Effect of Additives to ABS on the Mechanical Property Anisotropy of Specimens Fabricated by Material Extrusion 3D Printing, Addit. Manuf., 2015, 6, p 16–29. https://doi.org/10.1016/j.addma.2015.02.001

    Article  Google Scholar 

  44. 44.

    N.P. Levenhagen and M.D. Dadmun, Bimodal Molecular Weight Samples Improve the Isotropy of 3D Printed Polymeric Samples, Polymer (Guildf), 2017, 122, p 232–241. https://doi.org/10.1016/j.polymer.2017.06.057

    Article  Google Scholar 

  45. 45.

    J.T. Belter and A.M. Dollar, Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill Compositing Technique, PLoS ONE, 2015, 10(4), p e0122915. https://doi.org/10.1371/journal.pone.0122915

    Article  Google Scholar 

  46. 46.

    C.B. Sweeney, B.A. Lackey, M.J. Pospisil, T.C. Achee, V.K. Hicks, A.G. Moran, B.R. Teipel, M.A. Saed, and M.J. Green, Welding of 3D-Printed Carbon Nanotube–polymer Composites by Locally Induced Microwave Heating, Adv. Sci., 2017, https://doi.org/10.1126/sciadv.1700262

    Google Scholar 

  47. 47.

    A.B. AlAli, M.F. Griffin, and P.E. Butler, Three-Dimensional Printing Surgical Applications, Eplasty, 2015, 15, p e37

    Google Scholar 

  48. 48.

    N. Martelli, C. Serrano, H. Van Den Brink, J. Pineau, P. Prognon, I. Borget, and S. El Batti, Advantages and Disadvantages of 3-Dimensional Printing in Surgery: A Systematic Review, Surgery (United States), 2016, https://doi.org/10.1016/j.surg.2015.12.017

    Google Scholar 

  49. 49.

    M.P. Chae, W.M. Rozen, P.G. McMenamin, M.W. Findlay, R.T. Spychal, and D.J. Hunter-Smith, Emerging Applications of Bedside 3D Printing in Plastic Surgery, Front. Surg., 2015, 2, p 25. https://doi.org/10.3389/fsurg.2015.00025

    Article  Google Scholar 

  50. 50.

    H.H. Malik, A.R.J. Darwood, S. Shaunak, P. Kulatilake, A.A. El-Hilly, O. Mulki, and A. Baskaradas, Three-Dimensional Printing in Surgery: A Review of Current Surgical Applications, J. Surg. Res., 2015, https://doi.org/10.1016/j.jss.2015.06.051

    Google Scholar 

  51. 51.

    T.M. Rankin, N.A. Giovinco, D.J. Cucher, G. Watts, B. Hurwitz, and D.G. Armstrong, Three-Dimensional Printing Surgical Instruments: Are We There Yet?, J. Surg. Res., 2014, 189(2), p 193–197. https://doi.org/10.1016/j.jss.2014.02.020

    Article  Google Scholar 

  52. 52.

    S.M. Fuller, D.R. Butz, C.B. Vevang, and M.V. Makhlouf, Application of 3-Dimensional Printing in Hand Surgery for Production of a Novel Bone Reduction Clamp, J. Hand Surg., 2014, https://doi.org/10.1016/j.jhsa.2014.06.009

    Google Scholar 

  53. 53.

    J.Y. Wong and A.C. Pfahnl, 3D Printing of Surgical Instruments for Long-Duration Space Missions, Aviat. Sp. Environ. Med., 2014, 85(7), p 758–763

    Article  Google Scholar 

  54. 54.

    S. Kondor, C.G. Grant, P. Liacouras, M.J.R. Schmid, L. Michael Parsons, V.K. Rastogi, L.S. Smith, B. Macy, B. Sabart, and C. Macedonia, On Demand Additive Manufacturing of a Basic Surgical Kit, J. Med. Devices, 2013, 7(3), p 030916. https://doi.org/10.1115/1.4024490

    Article  Google Scholar 

  55. 55.

    K.A. da Silva Aquino, Sterilization by Gamma Irradiation, Gamma Radiat., 2012, https://doi.org/10.5772/34901

    Google Scholar 

  56. 56.

    J. O’Donnell and N. Rahman, Evidence of Crosslinking and Chain Scission in the Degradation of Poly (Tert-butyl Crotonate) by Γ-irradiation, J. Polym., 1977, https://doi.org/10.1002/pol.1977.170150113/abstract

    Google Scholar 

  57. 57.

    J. Odonnell, Chemistry of Radiation Degradation of Polymers, Radiat. Eff. Polym., 1990, 475, p 402–413. https://doi.org/10.1021/bk-1991-0475.ch024

    Article  Google Scholar 

  58. 58.

    M. Al-Sheikhly and A. Christou, How Radiation Affects Polymeric Materials, IEEE Trans. Reliab., 1994, 43(4), p 551–556. https://doi.org/10.1109/24.370227

    Article  Google Scholar 

  59. 59.

    T. Sasuga, N. Hayakawa, and K. Yoshida, Degradation in Tensile Properties of Aromatic Polymers by Electron Beam Irradiation, Polymer (Guildf), 1985, 26, p 1039–1045

    Article  Google Scholar 

  60. 60.

    A. Bhattacharya, Radiation and Industrial Polymers, Prog. Polym. Sci., 2000, 25(3), p 371–401. https://doi.org/10.1016/S0079-6700(00)00009-5

    Article  Google Scholar 

  61. 61.

    R.S. Benson, Use of Radiation in Biomaterials Science, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2002, p 752–757

  62. 62.

    S. Shaffer, K. Yang, J. Vargas, M.A. Di Prima, and W. Voit, On Reducing Anisotropy in 3D Printed Polymers via Ionizing Radiation, Polymer (United Kingdom), 2014, 55(23), p 5969–5979. https://doi.org/10.1016/j.polymer.2014.07.054

    Google Scholar 

  63. 63.

    C. Shemelya, A. Rivera, A. Perez, and C. Rocha, Mechanical, Electromagnetic, and X-Ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based, J. Electron., 2015, https://doi.org/10.1007/s11664-015-3687-7

    Google Scholar 

  64. 64.

    A.M. Schmalzer, C.M. Cady, D. Geller, D. Ortiz-Acosta, A.T. Zocco, J. Stull, and A. Labouriau, Gamma Radiation Effects on Siloxane-Based Additive Manufactured Structures, Radiat. Phys. Chem., 2017, 130, p 103–111. https://doi.org/10.1016/j.radphyschem.2016.07.020

    Article  Google Scholar 

  65. 65.

    ASTM, ASTM D638-14: Standard Test Method for Tensile Properties of Plastics, ASTM Stand., 2014, 08(01), p 1–15

    Google Scholar 

  66. 66.

    ASTM, ASTM D790-15e2, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM Stand., 2015, 08(01), p 1–11

    Google Scholar 

  67. 67.

    ASTM, ASTM D2240-15, Standard Test Method for Rubber Property—Durometer Hardness, ASTM Stand., 2015, 09(1), p 1–13

    Google Scholar 

  68. 68.

    Sterilization of Health Care products—Radiation—Part 2: Establishing the Sterilization Dose, ANSI/AAMI/ISO 11137-2, Association for the Advancement of Medical Instrumentation, June 2013

  69. 69.

    J. Cassidy, S. Nesaei, R. McTaggart, and F. Delfanian, Mechanical Response of High Density Polyethylene to Gamma Radiation from a Cobalt-60 Irradiator, Polym. Test., 2016, 52, p 111–116

    Article  Google Scholar 

  70. 70.

    K. Rojdev, M. O’Rourke, C. Hill, and S. Nutt, In-Situ Strain Analysis of Potential Habitat Composites Exposed to a Simulated Long-Term Lunar Radiation Exposure, Radiat. Phys., 2013, 84, p 235–241

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Kostas Kaounas for performing the gamma irradiation and 3M Corporations for providing the cobalt-60 irradiator. The experiments presented in this study were performed in Material Evaluation and Testing Laboratory (METLAB) in Mechanical Engineering Department at South Dakota State University (SDSU). Financial support for this paper was provided by Advanced Manufacturing Process Technology Transition & Training Center (AMPTEC), under Contract Number 3S6674.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Todd Letcher.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rankouhi, B., Javadpour, S., Delfanian, F. et al. Experimental Investigation of Mechanical Performance and Printability of Gamma-Irradiated Additively Manufactured ABS. J. of Materi Eng and Perform 27, 3643–3654 (2018). https://doi.org/10.1007/s11665-018-3463-y

Download citation

Keywords

  • 3D printing
  • ABS polymer
  • fused deposition modeling
  • gamma irradiation
  • mechanical properties
  • sterilization
  • surgical instruments