Skip to main content
Log in

The Corrosion Behavior of Zn/Graphene Oxide Composite Coatings Fabricated by Direct Current Electrodeposition

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The zinc (Zn) and Zn/graphene oxide (Zn/GO) composite coatings on the mild steel were fabricated by direct current electrodeposition from an acidic chloride bath without GO and that with four different concentrations (50, 100, 200 and 300 mg/L) of GO, respectively. The GO first is synthesized by using the typical Hummer method. Physical characterizations including the surface and cross-sectional morphology, chemical composition and crystal structure of the Zn and Zn/GO composite coatings were done by scanning electron microscope, energy-dispersive x-ray and x-ray diffraction. The crystalline size, texture coefficient, water contact angle and hardness of the Zn and Zn/GO composite coatings were measured. The corrosion behavior of the Zn and Zn/GO composite coatings was studied by the electrochemical corrosion tests including the potentiodynamic polarization test and the electrochemical impedance spectroscopy test and the immersion test. The result reveals that the corrosion resistance of the Zn coating is remarkably increased by the incorporation of GO. Furthermore, it does not show a linear increase with the increase in the amount of incorporated GO and an optimal corrosion resistance is provided by the Zn/GO composite coating attained from the electrolyte containing 100 mg/L GO. The influence of the incorporation of GO on the corrosion resistance of the Zn coating is explained in combination with their physical characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Barceló, M. Sarret, C. Müller, and J. Pregonas, Corrosion Resistance and Mechanical Properties of Zinc Electrocoatings, Electrochim. Acta, 1988, 43, p 13–20

    Article  Google Scholar 

  2. K.L. Lin, C.F. Yang, and J.T. Lee, Correlation of Microstructure with Corrosion and Electrochemical Behavior of the Batch-Type Hot-Dip Al-Zn Coatings: Part I. Zn and 5% Al-Zn Coatings, Corrosion, 1991, 47, p 9–12

    Article  Google Scholar 

  3. A.Y. Hosny, M.E. El-Rofei, T.A. Ramadan, and B.A. El-Gafari, Corrosion Resistance of Zinc Coatings Produced from a Sulfate Bath, Met. Finish., 1995, 93, p 55–59

    Article  Google Scholar 

  4. J.P.G. Farr and S.V. Kulkarni, The Chromate and Dichromate Passivation of Zinc, Trans. IMF, 1966, 44(1), p 21–26

    Article  Google Scholar 

  5. A. Suda and M. Asari, Zariyo-to-Kankyo, Behavior and Mechanism of Corrosion Protection for Galvanized Steels by Self-Healing Effect of Chromate Coatings, Corros. Eng., 1997, 46, p 95–102

    Article  Google Scholar 

  6. K. Vathsala and T.V. Venkatesha, Zn-ZrO2 Nanocomposite Coatings: Elecrodeposition and Evaluation of Corrosion Resistance, Appl. Surf. Sci., 2011, 257(21), p 8929–8936

    Article  Google Scholar 

  7. B. Veeraraghavan, B. Haran, S. Prabhu, and B. Popov, Corrosion Protection of Steel Using Nonanomalous Ni-Zn-P Coatings, J. Electrochem. Soc., 2003, 150, p B131–B139

    Article  Google Scholar 

  8. M. Ramasubramanian, B.N. Popov, and R.E. White, Characterization of Hydrogen Permeation Through Zinc-Nickel Alloys Under Corroding Conditions, J. Electrochem. Soc., 1998, 145, p 1907–1913

    Article  Google Scholar 

  9. P. Ganesan, S.P. Kumaraguru, and B.N. Popov, Development of Compositionally Modulated Multilayer Zn-Ni Deposits as Replacement for Cadmium, Surf. Coat. Technol., 2007, 201, p 7896–7904

    Article  Google Scholar 

  10. C.J. Lan, W.Y. Liu, S.T. Ke, and T.S. Chin, Potassium Salt Based Alkaline Bath for Deposition of Zn-Fe Alloys, Surf. Coat. Technol., 2006, 201, p 3103–3108

    Article  Google Scholar 

  11. S. Ganesan, G. Prabhu, and B.N. Popov, Electrodeposition and Characterization of Zn-Mn Coatings for Corrosion Protection, Surf. Coat. Technol., 2014, 238, p 143–151

    Article  Google Scholar 

  12. H. Kim, B. Popov, and K.S. Chen, Comparison of Corrosion-Resistance and Hydrogen Permeation Properties of Zn-Ni, Zn-Ni-Cd and Cd Coatings on Low-Carbon Steel, Corros. Sci., 2003, 45, p 1505–1521

    Article  Google Scholar 

  13. P. Ganesan, S.P. Kumaraguru, and B.N. Popov, Development of Zn-Ni-Cd Coatings by Pulse Electrodeposition Process, Surf. Coat. Technol., 2006, 201, p 3658–3669

    Article  Google Scholar 

  14. B. Veeraraghavan, H. Kim, and B.N. Popov, Optimization of Electroless Ni-Zn-P Deposition Process: Experimental Study and Mathematical Modeling, Electrochim. Acta, 2004, 49, p 3143–3154

    Article  Google Scholar 

  15. C. Yao, W. Chen, T. Zhu, S.L. Tay, and W. Gao, A Study on Corrosion Behaviour of Magnetron Sputtered Zn-Mg Coating, Surf. Coat. Technol., 2014, 249, p 90–96

    Article  Google Scholar 

  16. S. Sugimura and J. Liao, Long-Term Corrosion Protection of Arc Spray Zn-Al-Si Coating System in dilute Chloride Solutions and Sulfate Solutions, Surf. Coat. Technol., 2016, 302, p 398–409

    Article  Google Scholar 

  17. S. Schuerz, M. Fleischanderl, G.H. Luckeneder, K. Preis, T. Haunschmied, G. Mori, and A.C. Kneissl, Corrosion Behavior of Zn-Al-Mg Coated Steel Sheet in Sodium Chloride-Containing Environment, Corros. Sci., 2009, 51, p 2355–2363

    Article  Google Scholar 

  18. H. Zheng and M. An, Electrodeposition of Zn-Ni-Al2O3 Nanocomposite Coatings Under Ultrasound Conditions, J. Alloys Compd., 2008, 459, p 548–552

    Article  Google Scholar 

  19. B.M. Praveen and T.V. Venkatesha, Electrodeposition and Properties of Zn-Nanosized TiO2 Composite Coatings, Appl. Surf. Sci., 2008, 254(8), p 2418–2424

    Article  Google Scholar 

  20. C. Müller, M. Sarret, and M. Benballa, ZnNi/SiC Composites Obtained from an Alkalinebath, Surf. Coat. Technol., 2003, 162, p 49–53

    Article  Google Scholar 

  21. S. Ranganatha, T.V. Venkatesha, K. Vathsala, and M.K. Punith Kumar, Electrochemical Studies on Zn/Nano-CeO2 Electrodeposited Composite Coatings, Surf. Coat. Technol., 2012, 208, p 64–72

    Article  Google Scholar 

  22. B.M. Praveen, T.V. Venkatesha, Y. Arthoba Naik, and K. Prashantha, Corrosion Studies of Carbon Nanotubes-Zn Composite Coating, Surf. Coat. Technol., 2007, 201, p 5836–5942

    Article  Google Scholar 

  23. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Commun., 2008, 146, p 351–355

    Article  Google Scholar 

  24. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8, p 902–907

    Article  Google Scholar 

  25. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 321, p 385–388

    Article  Google Scholar 

  26. S. Chen, L. Brown, and M. Levendorf, Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy, ACS Nano, 2011, 5(2), p 1321–1327

    Article  Google Scholar 

  27. C.M.P. Kumar, T.V. Venkatesha, and R. Shabadi, Preparation and Corrosion Behavior of Ni and Ni-Graphene Composite Coatings, Mater. Res. Bull., 2013, 48(4), p 1477–1483

    Article  Google Scholar 

  28. Y. Jafari, S.M. Ghoreishi, and M. Shabani-Nooshabad, Polyaniline/Graphene Nanocomposite Coatings on Copper: Electropolymerization, Characterization, and Evaluation of Corrosion Protection Performance, Synth. Met., 2016, 217, p 220–230

    Article  Google Scholar 

  29. R. Berlia, M.K. Punith Kumar, and C. Srivastava, Electrochemical Behavior of Sn-Graphene Composite Coating, RSC Adv., 2015, 5, p 71413–71418

    Article  Google Scholar 

  30. M.K. PunithKumar, M. PratapSingh, and C. Srivastava, Electrochmical Behavior of Zn-Graphene Composite Coatings, RSC Adv., 2015, 5, p 25603–25608

    Article  Google Scholar 

  31. H. He and C. Gao, General Approach to Individually Dispersed, Highly Soluble, and Conductive Graphene Nanosheets Functionalized by Nitrene Chemistry, Chem. Mater., 2010, 22, p 5054–5064

    Article  Google Scholar 

  32. T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, and R. Ruoff, Functionalized Graphene Sheets for Polymer Nanocomposites, Nat. Nanotechnol., 2008, 3, p 327–331

    Article  Google Scholar 

  33. N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, and S.J. York, Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy, ACS Nano, 2009, 3, p 2547–2556

    Article  Google Scholar 

  34. D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, The Chemistry of Graphene Oxide, Chem. Soc. Rev., 2010, 39, p 228–240

    Article  Google Scholar 

  35. C. Liu, F. Su, and J. Liang, Producing Cobalt-Graphene Composite Coating by Pulse Electrodeposition with Excellent Wear and Corrosion Resistance, Appl. Surf. Sci., 2015, 351, p 889–896

    Article  Google Scholar 

  36. W.S. Hummers, Jr, and R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc., 1958, 80, p 1339

    Article  Google Scholar 

  37. H.P. Mungse and O.P. Khatri, Chemically Functionalized Reduced Graphene Oxide as a Novel Material for Reduction of Friction and Wear, J. Phys. Chem. C, 2014, 118, p 14394–14402

    Article  Google Scholar 

  38. S. Esmailzadeh, S. Khorsand, and K. Raeissi, Microstructural Evolution and Corrosion Resistance of Super-Hydrophobic Electrodeposited Nickel Films, Surf. Coat. Technol., 2015, 283, p 337–346

    Article  Google Scholar 

  39. D.C. Marcano, D.V. Kosynkin, and J.M. Berlin, Improved Synthesis of Graphene Oxide, ACS Nano, 2010, 4(8), p 4806–4810

    Article  Google Scholar 

  40. L. Muresan, L. Oniciu, M. Froment, and G. Maurin, Inhibition of Lead Electrocrystallization by Organic Additives, Electrochim. Acta, 1992, 37, p 2249–2254

    Article  Google Scholar 

  41. J. Han, Q.J. Xu, W. Liu, and Y.L. Min, Etching and Heating Treatment Combined Approach for Superhydrophobic Surface on Brass Substrates and the Consequent Corrosion Resistance, Corros. Sci., 2016, 102, p 251–258

    Article  Google Scholar 

  42. W. Liu, Q. Xu, J. Han, X. Chen, and Y. Min, A Novel Combination Approach for the Preparation of Superhydrophobic Surface on Copper and the Consequent Corrosion Resistance, Corros. Sci., 2016, 110, p 105–113

    Article  Google Scholar 

  43. L. Yang, Y. Wan, Z. Qin, Q. Xu, and Y. Min, Fabrication and Corrosion Resistance of a Graphene-Tin Oxide Composite Film on Aluminium Alloy 6061, Corros. Sci., 2018, 130, p 85–94

    Article  Google Scholar 

  44. M. Mouanga and P. Berçot, Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions; Part II: Electrochemical Analyses, Corros. Sci., 2010, 52, p 3993–4000

    Article  Google Scholar 

  45. J.C. Liu, S.W. Park, S. Nagao, M. Nogi, H. Koga, J.S. Ma, G. Zhang, and K. Suganuma, The Role of Zn Precipitates and Cl Anions in Pitting Corrosion of Sn-Zn Solder Alloys, Corros. Sci., 2015, 92, p 263–271

    Article  Google Scholar 

  46. S. Khabazian and S. Sanjabi, The Effect of Multi-walled Carbon Nanotube Pretreatments on the Electrodeposition of Ni-MWCNTs Coatings, Appl. Surf. Sci., 2011, 257, p 5850–5856

    Article  Google Scholar 

  47. S. Tao and D. Li, Tribological, Mechanical and Electrochemical Properties of Nanocrystalline Copper Deposits Produced by Pulse Electrodeposition, Nanotechnology, 2006, 17, p 65–69

    Article  Google Scholar 

  48. H. Park and J.A. Szpunar, The Role of Texture and Morphology in Optimizing the Corrosion Resistance of Zinc-Based Electrogalvanized Coatings, Corros. Sci., 1998, 40, p 525–545

    Article  Google Scholar 

  49. M.K. Punith Kumar and C. Srivastava, Enhancement of Corrosion Resistance of Zinc Coatings Using Green Additives, J. Mater. Eng. Perform., 2014, 23, p 3418–3424

    Article  Google Scholar 

  50. L.Y. Wang, J. Tu, W. Chen, Y. Wang, X. Liu, C. Olk, D. Cheng, and X. Zhang, Friction and Wear Behavior of Electroless Ni-Based CNT Composite Coatings, Wear, 2003, 254, p 1289–1293

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (No. 21673135) and Science and Technology Commission of Shanghai Municipality (No. 17020500700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xixun Shen or Qunjie Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Sheng, J., Zhang, Q. et al. The Corrosion Behavior of Zn/Graphene Oxide Composite Coatings Fabricated by Direct Current Electrodeposition. J. of Materi Eng and Perform 27, 3750–3761 (2018). https://doi.org/10.1007/s11665-018-3461-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3461-0

Keywords

Navigation