Skip to main content
Log in

Microstructures and Mechanical Behavior of Ti3SiC2/Al2O3-Ni Composites Synthesized by Pulse Discharge Sintering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High-purity Ti3SiC2 and Ti3SiC2/Al2O3-Ni composites with different Al2O3-Ni contents were fabricated using pulse discharge sintering (PDS) of a mechanical alloyed powder mixture. The synthesis process of monolithic Ti3SiC2 was studied through displacement temperature–time (DTT) curve, displacement rate–time and displacement rate–temperature diagrams obtained during the PDS process. It was found that TiCx and Ti5Si3Cy are the intermediate phases and the PDS process completed after 20 min at 1350 °C. The results showed that in Ti3SiC2/Al2O3-Ni composite, the Ni part of Al2O3-Ni leads to decomposition of Ti3SiC2 to TiCx, Ti5Si3Cy and Ni(Si)x. No evidence was detected in the reaction between Al2O3 and Ti3SiC2. The density and hardness of the composites are higher than monolithic Ti3SiC2 due to the production of reinforcing phases. The composite showed lower flexural strength and higher compressive strength than monolithic Ti3SiC2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Sun, Progress in Research and Development on MAX Phases: A Family of Layered Ternary Compounds, Int. Mater. Rev., 2011, 56(3), p 143–166

    Article  Google Scholar 

  2. P. Eklund, J. Rosen, and P.O.Å. Persson, Layered Ternary M n+ 1AX n Phases and Their 2D Derivative MXene: An Overview From a Thin-Film Perspective, J. Phys. D Appl. Phys., 2017, 50(11), p 113001

    Article  Google Scholar 

  3. P. Eklund, M. Beckers, U. Jansson, H. Högberg, and L. Hultman, The M n+1 AX n Phases: Materials Science and Thin-Film Processing, Thin Solid Films, 2010, 518(8), p 1851–1878

    Article  Google Scholar 

  4. H. Zhang, Y. Bao, and Y. Zhou, Current Status in Layered Ternary Carbide Ti3SiC2, A Review, J. Mater. Sci. Technol., 2009, 25(1), p 1–38

    Article  Google Scholar 

  5. M. Radovic and M.W. Barsoum, MAX Phases: Bridging the Gap Between Metals and Ceramics, Am. Ceram. Soc. Bull., 2013, 92(3), p 20–27

    Google Scholar 

  6. S. Yang, Z.M. Sun, H. Hashimoto, and T. Abe, Synthesis of Single-Phase Ti3SiC2 Powder, J. Eur. Ceram. Soc., 2003, 23(16), p 3147–3152

    Article  Google Scholar 

  7. S. Zhimei, Z. Yi, and Z. Yanchun, Synthesis of Ti3SiC2 Powders by a Solid–Liquid Reaction Process, Scr. Mater., 1999, 41(1), p 61–66

    Article  Google Scholar 

  8. Z. Sun, S. Yang, and H. Hashimoto, Ti3SiC2 Powder Synthesis, Ceram. Int., 2004, 30(7), p 1873–1877

    Article  Google Scholar 

  9. S. Vadchenko, A. Sytschev, D.Y. Kovalev, A. Shchukin, and A. Belikova, SHS of MAX Compounds in the Ti-Si-C System: Influence of Mechanical Activation, Int. J. Self-Propag. High-Temp Synth., 2014, 23(3), p 141–144

    Article  Google Scholar 

  10. S. Jacques, H. Di-Murro, M.-P. Berthet, and H. Vincent, Pulsed Reactive Chemical Vapor Deposition in the C-Ti-Si System From H2/TiCl4/SiCl4, Thin Solid Films, 2005, 478(1), p 13–20

    Article  Google Scholar 

  11. H. Fakih, S. Jacques, M.-P. Berthet, F. Bosselet, O. Dezellus, and J.-C. Viala, The Growth of Ti3SiC2 Coatings Onto SiC by Reactive Chemical Vapor Deposition Using H2 and TiCl4, Surf. Coat. Technol., 2006, 201(6), p 3748–3755

    Article  Google Scholar 

  12. J.-P. Palmquist, U. Jansson, T. Seppänen, P.Å. Persson, J. Birch, L. Hultman, and P. Isberg, Magnetron Sputtered Epitaxial Single-Phase Ti3SiC2 Thin Films, Appl. Phys. Lett., 2002, 81(5), p 835–837

    Article  Google Scholar 

  13. V. Vishnyakov, J. Lu, P. Eklund, L. Hultman, and J. Colligon, Ti3SiC2-Formation During Ti-C-Si Multilayer Deposition by Magnetron Sputtering at 650 °C, Vacuum, 2013, 93, p 56–59

    Article  Google Scholar 

  14. P. Eklund, A. Murugaiah, J. Emmerlich, Z. Czigàny, J. Frodelius, M.W. Barsoum, H. Högberg, and L. Hultman, Homoepitaxial Growth of Ti-Si-C MAX-Phase Thin Films on Bulk Ti3SiC2 Substrates, J. Cryst. Growth, 2007, 304(1), p 264–269

    Article  Google Scholar 

  15. W. Jeitschko and H. Nowotny, Die Kristallstruktur von Ti3SiC2—ein neuer Komplexcarbid-Typ, Monatshefte für Chemie/Chemical Monthly, 1967, 98(2), p 329–337

    Article  Google Scholar 

  16. M.W. Barsoum and T. El-Raghy, Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2, J. Am. Ceram. Soc., 1996, 79(7), p 1953–1956

    Article  Google Scholar 

  17. Y. Zhou, Z. Sun, S. Chen, and Y. Zhang, In-Situ Hot Pressing/Solid–Liquid Reaction Synthesis of Dense Titanium Silicon Carbide Bulk Ceramics, Mater. Res. Innov., 1998, 2(3), p 142–146

    Article  Google Scholar 

  18. S. Yang, Z. Sun, Q. Yang, and H. Hashimoto, Effect of Al Addition on the Synthesis of Ti3SiC2 Bulk Material by Pulse Discharge Sintering Process, J. Eur. Ceram. Soc., 2007, 27(16), p 4807–4812

    Article  Google Scholar 

  19. Y. Zou, Z. Sun, S. Tada, and H. Hashimoto, Effect of Al Addition on Low-Temperature Synthesis of Ti3SiC2 Powder, J. Alloys Compd., 2008, 461(1), p 579–584

    Article  Google Scholar 

  20. H. Li, L. Peng, M. Gong, L. He, J. Zhao, and Y. Zhang, Processing and Microstructure of Ti3SiC2/M (M = Ni or Co) Composites, Mater. Lett., 2005, 59(21), p 2647–2649

    Article  Google Scholar 

  21. W.-L. Gu and Y.-C. Zhou, Reactions Between Ti and Ti3SiC2 in Temperature Range of 1273-1573 K, Trans. Nonferrous Met. Soc. China, 2006, 16(6), p 1281–1288

    Article  Google Scholar 

  22. Y. Zhou and W. Gu, Chemical Reaction and Stability of Ti3SiC2 in Cu During High-Temperature Processing of Cu/Ti3SiC2 Composites, Zeitschrift für Metallkunde, 2004, 95(1), p 50–56

    Article  Google Scholar 

  23. J. Lu, Y. Zhou, Y. Zheng, H. Li, and S. Li, Interface Structure and Wetting Behaviour of Cu/Ti3SiC2 System, Adv. Appl. Ceram., 2015, 114(1), p 39–44

    Article  Google Scholar 

  24. J. Yang, L. Pan, W. Gu, T. Qiu, Y. Zhang, and S. Zhu, Microstructure and Mechanical Properties of In Situ Synthesized (TiB2 + TiC)/Ti3SiC2 Composites, Ceram. Int., 2012, 38(1), p 649–655

    Article  Google Scholar 

  25. K. Song, J. Yang, T. Qiu, and L. Pan, In Situ Synthesis of (TiB2 + SiC)/Ti3SiC2 Composites by Hot Pressing, Mater. Lett., 2012, 75, p 16–19

    Article  Google Scholar 

  26. Y. Cai, H. Yin, L. Pan, P. Chen, and G. Sun, Microstructures and Mechanical Properties of Ti3SiC2/TiC-Al2O3 Composites Synthesized by Reactive Hot Pressing, Mater. Sci. Eng. A, 2013, 571, p 137–143

    Article  Google Scholar 

  27. J.G. Miranda Hernández, S. Moreno Guerrero, A.B. Soto Guzmán, and E. Rocha Rangel, Production and Characterization of Al2O3-Cu Composite Materials, J. Ceram. Proc. Res., 2006, 7(4), p 311–315

    Google Scholar 

  28. M.A. Taha, A.H. Nassar, and M.F. Zawrah, Improvement of Wetability, Sinterability, Mechanical and Electrical Properties of Al2O3-Ni Nanocomposites Prepared by Mechanical Alloying, Ceram. Int., 2017, 43(4), p 3576–3582

    Article  Google Scholar 

  29. M. Lieberthal and W.D. Kaplan, Processing and Properties of Al2O3 Nanocomposites Reinforced with Sub-Micron Ni and NiAl2O4, Mater. Sci. Eng. A, 2001, 302(1), p 83–91

    Article  Google Scholar 

  30. K. Konopka and M. Szafran, Fabrication of Al2O3-Al Composites by Infiltration Method and Their Characteristic, J. Mater. Process. Technol., 2006, 175(1), p 266–270

    Article  Google Scholar 

  31. F. Qi, Z. Wang, J. Wu, H. Xu, J. Kou, and L. Zhang, Improved Mechanical Properties of Al2O3 Ceramic by In-Suit Generated Ti3SiC2 and TiC Via Hot Pressing Sintering, Ceram. Int., 2017, 43(14), p 10691–10697

    Article  Google Scholar 

  32. Y. Luo, W. Pan, S. Li, R. Wang, and J. Li, Fabrication of Al2O3-Ti3SiC2 Composites and Mechanical Properties Evaluation, Mater. Lett., 2003, 57(16), p 2509–2514

    Article  Google Scholar 

  33. S. Emami, E. Salahi, M. Zakeri, and S. Tayebifard, Effect of Composition on Spark Plasma Sintering of ZrB2-SiC-ZrC Nanocomposite Synthesized by MASPSyn, Ceram. Int., 2017, 43(1), p 111–115

    Article  Google Scholar 

  34. S. Emami, E. Salahi, M. Zakeri, and S. Tayebifard, Synthesis of ZrB2-SiC-ZrC Nanocomposite by Spark Plasma in ZrSiO4/B2O3/C/Mg System, Ceram. Int., 2016, 42(6), p 6581–6586

    Article  Google Scholar 

  35. P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International, Russell, 1995

    Google Scholar 

  36. J. Zhu, B. Mei, X. Xu, and J. Liu, Synthesis of Single-Phase Polycrystalline Ti3SiC2 and Ti3AlC2 by Hot Pressing with the Assistance of Metallic Al or Si, Mater. Lett., 2004, 58(5), p 588–592

    Article  Google Scholar 

  37. C. Racault, F. Langlais, and R. Naslain, Solid-State Synthesis and Characterization of the Ternary Phase Ti3SiC2, J. Mater. Sci., 1994, 29(13), p 3384–3392

    Article  Google Scholar 

  38. W. Dang, S. Ren, J. Zhou, Y. Yu, Z. Li, and L. Wang, Influence of Cu on the Mechanical and Tribological Properties of Ti3SiC2, Ceram. Int., 2016, 42(8), p 9972–9980

    Article  Google Scholar 

  39. T. El-Raghy, A. Zavaliangos, M.W. Barsoum, and S.R. Kalidindi, Damage Mechanisms Around Hardness Indentations in Ti3SiC2, J. Am. Ceram. Soc., 1997, 80(2), p 513–516

    Article  Google Scholar 

  40. Y. Zhou and Z. Sun, Electronic Structure and Bonding Properties in Layered Ternary Carbide Ti3SiC2, J. Phys.: Condens. Matter, 2000, 12(28), p 457

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge researchers group in Ceramic Department, Materials and Energy Research Centre (MERC), Iran, for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Sovizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourali, Z., Sovizi, M.R., Yaftian, M.R. et al. Microstructures and Mechanical Behavior of Ti3SiC2/Al2O3-Ni Composites Synthesized by Pulse Discharge Sintering. J. of Materi Eng and Perform 27, 3600–3609 (2018). https://doi.org/10.1007/s11665-018-3452-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3452-1

Keywords

Navigation