A Study on Passive and Electrochemical Response of Pure Nickel in Borate Buffer Solutions: Effect of Cold Deformation

  • Arash Fattah-alhosseini
  • Majid Naseri
  • Seyed Omid Gashti
  • Saeed Vafaeian
  • Mohsen K. Keshavarz


In the present work, influences of the cold deformation on electrochemical and passive response of pure nickel in three solutions with adjusted pH values of 8.5, 9.0, and 9.5 at 298 ± 1 K (25 ± 1 °C) were investigated. A cold deformation process was applied by means of cold rolling. Implementation of the cold deformation process resulted in samples having a finer microstructure. Also, the cold work and grain refinement led to increased hardness. In addition, open-circuit potential and potentiodynamic polarization tests were performed and results showed that corrosion current density was reduced by applying the cold deformation. Moreover, the results of the electrochemical impedance spectroscopy and Mott–Schottky analyses indicated higher corrosion resistance of pure nickel after cold deformation. This behavior is attributed to the growth of much thicker, with less point defects, passive layer on the surface of cold-deformed samples.


cold deformation EIS microhardness passive layer pure nickel XRD 


  1. 1.
    Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, and G. Liu, Effects of Initial δ Phase on Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy, Mater. Sci. Eng. A, 2014, 598, p 251-262CrossRefGoogle Scholar
  2. 2.
    T. Bellezze, G. Roventi, and R. Fratesi, Electrochemical Characterization of Three Corrosion Resistant Alloys After Processing for Heating-Element Sheathing, Electrochim. Acta, 2004, 49, p 3005-3014CrossRefGoogle Scholar
  3. 3.
    T. Bellezze, G. Roventi, and R. Fratesi, Electrochemical Study on the Inhibitory Effect of the Under Potential Deposition of Zinc on Zn-Co Alloy Electrodeposition, Electrochim. Acta, 2006, 51, p 2691-2697CrossRefGoogle Scholar
  4. 4.
    X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568-577CrossRefGoogle Scholar
  5. 5.
    Y.C. Lin, D.X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 59, p 115-123CrossRefGoogle Scholar
  6. 6.
    K. SitaramaRaju, M. Ghanashyam Krishna, K.A. Padmanabhan, K. Muraleedharan, N.P. Gurao, and G. Wilde, Grain Size and Grain Boundary Character Distribution in Ultra-Fine Grained (ECAP) Nickel, Mater. Sci. Eng. A, 2008, 491, p 1-7CrossRefGoogle Scholar
  7. 7.
    S.V. Divinski, G. Reglitz, I.S. Golovin, M. Peterlechner, R. Lapovok, Y. Estrin, and G. Wilde, Effect of Heat Treatment on Diffusion, Internal Friction, Microstructure and Mechanical Properties of Ultra-Fine-Grained Nickel Severely Deformed by Equal-Channel Angular Pressing, Acta Mater., 2015, 82, p 11-21CrossRefGoogle Scholar
  8. 8.
    A.P. Zhilyaev, B.K. Kim, J.A. Szpunar, M.D. Baró, and T.G. Langdon, The Microstructural Characteristics of Ultrafine-Grained Nickel, Mater. Sci. Eng. A, 2005, 391, p 377-389CrossRefGoogle Scholar
  9. 9.
    A.P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev, and T.G. Langdon, Microhardness and Microstructural Evolution in Pure Nickel During High-Pressure Torsion, Scr. Mater., 2001, 44, p 2753-2758CrossRefGoogle Scholar
  10. 10.
    Y.B. Zhang, O.V. Mishin, N. Kamikawa, A. Godfrey, W. Liu, and Q. Liu, Microstructure and Mechanical Properties of Nickel Processed by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2013, 576, p 160-166CrossRefGoogle Scholar
  11. 11.
    S.G. Wang, C.B. Shen, K. Long, H.Y. Yang, F.H. Wang, and Z.D. Zhang, Preparation and Electrochemical Corrosion Behavior of Bulk Nanocrystalline Ingot Iron in HCl Acid Solution, J. Phys. Chem. B, 2005, 109, p 2499-2503CrossRefGoogle Scholar
  12. 12.
    A. Barbucci, M. Delucchi, M. Panizza, M. Sacco, and G. Cerisola, Electrochemical and Corrosion Behavior of Cold Rolled AISI, 301 in 1M H2SO4, J. Alloys Compd., 2001, 317-318, p 607-611CrossRefGoogle Scholar
  13. 13.
    B.R. Kumar, R. Singh, B. Mahato, P.K. De, N.R. Bandyopadhyay, and D.K. Bhattacharya, Effect of Texture on Corrosion Behavior of AISI, 304L Stainless Steel, Mater. Charact., 2005, 54, p 141-147CrossRefGoogle Scholar
  14. 14.
    A. Fattah-alhosseini and S. Vafaeian, Comparison of Electrochemical Behavior Between Coarse-Grained and Fine-Grained AISI, 430 Ferritic Stainless Steel by Mott–Schottky Analysis and EIS Measurements, J. Alloys Compd., 2015, 639, p 301-307CrossRefGoogle Scholar
  15. 15.
    A. Fattah-alhosseini and S. Vafaeian, Influence of Grain Refinement on the Electrochemical Behavior of AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, Appl. Surf. Sci., 2016, 360, p 921-928CrossRefGoogle Scholar
  16. 16.
    G. Ben Hamu, D. Eliezer, and L. Wagner, The Relation Between Severe Plastic Deformation Microstructure and Corrosion Behavior of AZ31 Magnesium Alloy, J. Alloys Compd., 2009, 468, p 222-229CrossRefGoogle Scholar
  17. 17.
    K.D. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: A Review, Corrosion, 2010, 66, p 075005-075013CrossRefGoogle Scholar
  18. 18.
    S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Microstructure, Mechanical Properties and Electrochemical Behavior of AA1050 Processed by Accumulative Roll Bonding (ARB), J. Alloys Compd., 2016, 688, p 44-55CrossRefGoogle Scholar
  19. 19.
    A. Fattah-alhosseini, S.O. Gashti, and M.K. Keshavarz, Effect of Film Formation Potential on Passive Behavior of Ultra-Fine-Grained 1050 Al Alloy Fabricated via ARB Process, J. Mater. Eng. Perform., 2016, 25, p 1683-1689CrossRefGoogle Scholar
  20. 20.
    O. Imantalab, A. Fattah-alhosseini, M.K. Keshavarz, and Y. Mazaheri, Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro-and Nano-Grained Copper, J. Mater. Eng. Perform., 2016, 25, p 697-703CrossRefGoogle Scholar
  21. 21.
    O. Imantalab, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Strengthening Mechanisms and Electrochemical Behavior of Ultrafine-Grained Commercial Pure Copper Fabricated by Accumulative Roll Bonding, Metall. Mater. Trans. A, 2016, 47, p 3684-3693CrossRefGoogle Scholar
  22. 22.
    A. Fattah-alhosseini and O. Imantalab, Effect of Accumulative Roll Bonding Process on the Electrochemical Behavior of Pure Copper, J. Alloys Compd., 2015, 632, p 48-52CrossRefGoogle Scholar
  23. 23.
    Y. Estrin and A. Vinogradov, Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science, Acta Mater., 2015, 61, p 782-817CrossRefGoogle Scholar
  24. 24.
    B. Beverskog and I. Puigdomenech, Revised Pourbaix Diagrams for Nickel at 25-300 °C, Corros. Sci., 1997, 39, p 969-980CrossRefGoogle Scholar
  25. 25.
    L. Jinlong and L. Hongyun, The Effects of Cold Rolling Temperature on Corrosion Resistance of Pure Iron, Appl. Surf. Sci., 2014, 317, p 125-130CrossRefGoogle Scholar
  26. 26.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004Google Scholar
  27. 27.
    O. Engler and V. Randle, Introduction to Texture Analysis—Macrotexture, Microtexture, and Orientation Mapping, 2nd ed., Taylor & Francis Group, New York, 2010Google Scholar
  28. 28.
    C.C. Koch and Y.S. Cho, Nanocrystals by High Energy Ball Milling, Nanostruct. Mater., 1992, 1, p 207-212CrossRefGoogle Scholar
  29. 29.
    D. Gholami, O. Imantalab, M. Naseri, S. Vafaeian, and A. Fattah-alhosseini, Assessment of Microstructural and Electrochemical Behavior of Severely Deformed Pure Copper Through Equal Channel Angular Pressing, J. Alloys Compd., 2017, 723, p 856-865CrossRefGoogle Scholar
  30. 30.
    J. Starink Marco, G. Qiao Xiao, J. Zhang, and N. Gao, Predicting Grain Refinement by Cold Severe Plastic Deformation in Alloys Using Volume Averaged dislocation Generation, Acta Mater., 2009, 57, p 5796-5811CrossRefGoogle Scholar
  31. 31.
    N. Hansen and D. Juul Jensen, Deformed Metals—Structure, Recrystallization and Strength, Mater. Sci. Technol., 2011, 27, p 1229-1240CrossRefGoogle Scholar
  32. 32.
    M. Alvand, M. Naseri, E. Borhani, and H. Abdollah-Pour, Nano/Ultrafine Grained AA2024 alloy Processed by Accumulative Roll Bonding: A Study of Microstructure, Deformation Texture and Mechanical Properties, J. Alloys Compd., 2017, 712, p 517-525CrossRefGoogle Scholar
  33. 33.
    N. Hansen, Boundary Strengthening in Undeformed and Deformed Polycrystals, Mater. Sci. Eng. A, 2005, 409, p 39-45CrossRefGoogle Scholar
  34. 34.
    M. Naseri, M. Reihanian, and E. Borhani, A New Strategy to Simultaneous Increase in the Strength and Ductility of AA2024 Alloy Via Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2016, 656, p 12-20CrossRefGoogle Scholar
  35. 35.
    E. Van Gheem, J. Vereecken, and C. Le Pen, Influence of Different Anions on the Behaviour of Aluminium in Aqueous Solutions, J. Appl. Electrochem., 2002, 32, p 1193-1200CrossRefGoogle Scholar
  36. 36.
    A. Fattah-alhosseini, M. Naseri, O. Imantalab, D. Gholami, and M. Haghshenas, The Passive Film Characteristics of Cold Deformed Pure Copper, J. Mater. Eng. Perform., 2016, 25(11), p 4741-4749CrossRefGoogle Scholar
  37. 37.
    A. Fattah-alhosseini, M. Naseri, and M.H. Alemi, Effect of Particles Content on Microstructure, Mechanical Properties, and Electrochemical Behavior of Aluminum-Based Hybrid Composite Processed by Accumulative Roll Bonding Process, Metall. Mater. Trans. A, 2017, 48, p 1343-1354CrossRefGoogle Scholar
  38. 38.
    B.A. Boukamp, Practical Application of the Kramers–Kronig Transformation on Impedance Measurements in Solid State Electrochemistry, Solid State Ionics, 1993, 62, p 131-141CrossRefGoogle Scholar
  39. 39.
    J.B. Jorcin, M.E. Orazem, N. Pébère, and B. Tribollet, CPE Analysis by Local Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2006, 51, p 1473-1479CrossRefGoogle Scholar
  40. 40.
    B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films I. Theory, J. Electrochem. Sci, 2010, 157, p C452-C457CrossRefGoogle Scholar
  41. 41.
    M.E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A.L. Bunge, E.A. White, D.P. Riemer, and M. Musiani, Dielectric Properties of Materials Showing Constant-Phase-Element (CPE) Impedance Response, J. Electrochem. Sci, 2013, 160, p C215-C225CrossRefGoogle Scholar
  42. 42.
    G.J. Brug, A.L.G. Van Den Eeden, M. Sluyters-Rehbach, and J.H. Sluyters, The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element, J. Electroanal. Chem. Interfacial Electrochem., 1984, 176, p 275-295CrossRefGoogle Scholar
  43. 43.
    C.H. Hsu and F. Mansfeld, Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y 0 into a Capacitance, Corrosion, 2001, 57, p 747-748CrossRefGoogle Scholar
  44. 44.
    M. Benoit, C. Bataillon, B. Gwinner, F. Miserque, M.E. Orazem, C.M. Sánchez-Sánchez, B. Tribollet, and V. Vivier, Comparison of Different Methods for Measuring the Passive Film Thickness on Metals, Electrochim. Acta, 2016, 201, p 340-347CrossRefGoogle Scholar
  45. 45.
    S. Chakri, I. Frateur, M.E. Orazem, E.M.M. Sutter, T.T.M. Tran, B. Tribollet, and V. Vivier, Improved EIS Analysis of the Electrochemical Behaviour of Carbon Steel in Alkaline Solution, Electrochim. Acta, 2017, 246, p 924-930CrossRefGoogle Scholar
  46. 46.
    T. Barrès, B. Tribollet, O. Stephan, H. Montigaud, M. Boinet, and Y. Cohin, Characterization of the Porosity of Silicon Nitride Thin Layers by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2017, 227, p 1-6CrossRefGoogle Scholar
  47. 47.
    R.W. Bosch, D. Féron, and J.P. Celis, Electrochemistry in Light Water Reactors: Reference Electrodes, Measurement, Corrosion and Tribocorrosion Issues, Vol 49, Elsevier, Oxford, 2007CrossRefGoogle Scholar
  48. 48.
    K. Darowicki, K. Andrearczyk, P. Slepski, A. Sierczynska, G. Lota, K. Fic, and K. Lota, Determination of Pseudocapacitance Changes of Nickel Oxide NiO Electrode With the Use of Dynamic Electrochemical Impedance Spectroscopy, Int. J. Electrochem. Sci., 2014, 9, p 1702-1714Google Scholar
  49. 49.
    J.J. Gray, B.S. El Dasher, and C.A. Orme, Competitive Effects of Metal Dissolution and Passivation Modulated by Surface Structure: An AFM and EBSD Study of the Corrosion of Alloy 22, Surf. Sci., 2006, 600, p 2488-2494CrossRefGoogle Scholar
  50. 50.
    J.J. Gray and C.A. Orme, Electrochemical Impedance Spectroscopy Study of the Passive Films of Alloy 22 in Low pH Nitrate and Chloride Environments, Electrochem. Acta, 2007, 52, p 2370-2375CrossRefGoogle Scholar
  51. 51.
    S. Maximovitch, Influence of Formation Conditions on Impedance Properties of Nickel Passive Layers Formed in 1 M KOH, Electrochim. Acta, 1996, 41, p 2761-2771CrossRefGoogle Scholar
  52. 52.
    G. Barral, F. Njanjo-Eyoke, and S. Maximovitch, Characterisati on of the Passive Layer and of Hydroxide Deposits of Nickel by Impedance Spectroscopy, Electrochim. Acta, 1995, 40, p 2815-2828CrossRefGoogle Scholar
  53. 53.
    Z. Grubač, Ž. Petrović, J. Katić, M. Metikoš-Huković, and R. Babic, The Electrochemical Behaviour of Nanocrystalline Nickel: A Comparison with Polycrystalline Nickel Under the Same Experimental Condition, J. Electroanal. Chem., 2010, 645, p 87-93CrossRefGoogle Scholar
  54. 54.
    J.W. Schultze and M.M. Lohrengel, Stability, Reactivity and Breakdown of Passive Films. Problems of Recent and Future Research, Electrochim. Acta, 2000, 45, p 2499-2513CrossRefGoogle Scholar
  55. 55.
    G. Meng, Y. Li, Y. Shao, T. Zhang, Y. Wang, F. Wang, X. Cheng, C. Dong, and X. Li, Effect of Microstructures on Corrosion Behavior of Nickel Coatings: (I) Abnormal Grain Size Effect on Corrosion Behavior, J. Mater. Sci. Technol., 2015, 31, p 1186-1192CrossRefGoogle Scholar
  56. 56.
    S.O. Gashti, A. Fattah-alhosseini, and Y. Mazaheri, Electrochemical Behavior of Passive Films Formed on the Surface of Coarse-, Fine- and Ultra-fine-Grained AA1050 Based on a Modified PDM, Acta Metall. Sin. (Engl. Lett.), 2016, 29(7), p 629-637CrossRefGoogle Scholar
  57. 57.
    D.D. Macdonald, On the Existence of Our Metals-Based Civilization I. Phase-Space Analysis, J. Electrochem. Soc., 2006, 153, p B213-B224CrossRefGoogle Scholar
  58. 58.
    D.D. Macdonald, The Passive State in Our Reactive Metals-Based Civilization, Arab. J. Sci. Eng., 2012, 37, p 1143-1185CrossRefGoogle Scholar
  59. 59.
    D.D. Macdonald, On the Tenuous Nature of Passivity and Its Role in the Isolation of HLNW, J. Nucl. Mater., 2008, 379, p 24-32CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Arash Fattah-alhosseini
    • 1
  • Majid Naseri
    • 2
  • Seyed Omid Gashti
    • 1
  • Saeed Vafaeian
    • 1
  • Mohsen K. Keshavarz
    • 3
  1. 1.Department of Materials EngineeringBu-Ali Sina UniversityHamedanIran
  2. 2.Department of Materials Science and Engineering, Faculty of EngineeringShahid Chamran University of AhvazAhvazIran
  3. 3.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada

Personalised recommendations