Skip to main content
Log in

Effect of the Soldering Atmosphere on the Wettability Between Sn4.0Ag0.5Cu (in wt.%) Lead-Free Solder Paste and Various Substrates

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The “degree of wetting,” which is related to the contact angle (θ) between the molten solder and the substrate, is a useful parameter on the solderability process control. The contact angle, however, is strongly dependent on the type of substrate surface finish and used atmosphere (inert or non-inert). Furthermore, the surface tension, being an important parameter on the solderability process and performance, can also be achieved if the contact angle is known. In this study, the SAC405 [Sn4.0Ag0.5Cu (in wt.%)] solder paste contact angle was measured, by the “sessile drop” method, as a function of the temperature, surface pad finish and used atmosphere. The results are discussed, and the contact angles obtained for the different conditions are compared and discussed. Then, the surface tension (experimental) was obtained from the measured contact angle and compared with the obtained by using computation models (theoretical). The experiments performed in high vacuum conditions, i.e., low oxygen content, over a temperature range, allowed the evaluation and understanding of the surface oxides layers role on the solder wettability. The present study shows that in the soldering process, even in an inert atmosphere, usually used in industry, occurs the formation of superficial oxides, over the liquid solder and/or at the pad surfaces, that strongly affects the solder paste wettability, specially with Sn and OSP (organic solderability preservative) finishing. Differences in contact angle of ≥ 10° were determined between the two types of used atmospheres. The experimental surface tension and theoretical surface tension obtained, for the NiAu substrate type, present good correlation. The lower contact angle values were obtained for the NiAu and OSP finish types, independently of the atmosphere type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.F. Arenas and V.L. Acoff, Contact Angle Measurements of Sn-Ag and Sn-Cu Lead-Free Solders on Copper Substrates, J. Electron. Mater., 2004, 33(12), p 1452–1458

    Article  CAS  Google Scholar 

  2. S. Amore, E. Ricci, G. Borzone, and R. Novakovic, Wetting Behaviour of Lead-Free Sn-Based Alloys on Cu and Ni Substrates, Mater. Sci. Eng., A, 2008, 495(1–2), p 108–112

    Article  Google Scholar 

  3. V. Vuorinen, T. Laurila, H. Yu, and J.K. Kivilahti, Phase Formation Between Lead-Free Sn-Ag-Cu Solder and Ni(P)/Au Finishes, J. Appl. Phys., 2006, 99(2), p 023530

    Article  Google Scholar 

  4. C. Leinenbach, F. Valenza, D. Giuranno, H.R. Elsener, S. Jin, and R. Novakovic, Wetting and Soldering Behavior of Eutectic Au-Ge Alloy on Cu and Ni Substrates, J. Electron. Mater., 2011, 40(7), p 1533–1541

    Article  CAS  Google Scholar 

  5. T. Chellaih, G. Kumar, and K.N. Prabhu, Effect of Thermal Contact Heat Transfer on Solidification of Pb-Sn and Pb-Free Solders, Mater. Des., 2007, 28(3), p 1006–1011

    Article  CAS  Google Scholar 

  6. C.-T. Lin and K.-L. Lin, Contact Angle of 63Sn-37Pb and Pb-Free Solder on Cu Plating, Appl. Surf. Sci., 2003, 214(1-4), p 243–258

    Article  CAS  Google Scholar 

  7. L. Boinovich and A. Emelyanenko, Wetting and Surface Forces, J. Colloid Interface Sci., 2011, 165(2), p 60–69

    Article  CAS  Google Scholar 

  8. F. Guo, S. Choi, J.P. Lucas, and K.N. Subramanian, Effects of Reflow on Wettability, Microstructure and Mechanical Properties in Lead-Free Solders, J. Electron. Mater., 2000, 29(10), p 1241–1248

    Article  CAS  Google Scholar 

  9. J. Lee, S. Chen, H. Chang, and C. Chen, Reactive Wetting Between Molten Sn-Bi and Ni Substrate, J. Electron. Mater., 2003, 32(3), p 13–17

    Article  Google Scholar 

  10. C. Gonçalves, H. Leitão, C.S. Lau, J.C. Teixeira, L. Ribas, S. Teixeira, M.F. Cerqueira, F. Macedo, and D. Soares, Wetting Behaviour of SAC305 Solder on Different Substrates in High Vacuum and Inert Atmosphere, J. Mater. Sci.: Mater. Electron., 2015, 26(7), p 5106–5112

    Google Scholar 

  11. V.H. López and A.R. Kennedy, Flux-Assisted Wetting and Spreading of Al on TiC, J. Colloid Interface Sci., 2006, 298(1), p 356–362

    Article  Google Scholar 

  12. K.N. Prabhu, Reactive Wetting, Evolution of Interfacial and Bulk IMCs and Their Effect on Mechanical Properties of Eutectic Sn-Cu Solder Alloy, Adv. Colloid Interface Sci., 2011, 166(1–2), p 87–118

    Google Scholar 

  13. G. Humpston and D.M. Jacobson, Principles of Soldering, ASM International, Ohio, 2004

    Google Scholar 

  14. N. Eustathopoulos, M.G. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon, Oxford, 1999

    Google Scholar 

  15. J.A. Warren, W.J. Boettinger, and A.R. Roosen, Modelling Reative Wetting, Acta Mater., 1998, 46(9), p 3247–3264

    Article  CAS  Google Scholar 

  16. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Wetting and Spreading, Rev. Mod. Phys., 2009, 81(2), p 739–805

    Article  CAS  Google Scholar 

  17. E.E.M. Noor, N.M. Sharif, C.K. Yew, T. Ariga, A.B. Ismail, and Z. Hussain, Wettability and Strength of In-Bi-Sn Lead-Free Solder Alloy on Copper Substrate, J. Alloy. Compd., 2010, 507(1), p 290–296

    Article  CAS  Google Scholar 

  18. L. Zang, Z. Yuan, H. Xu, and B. Xu, Wetting Process and Interfacial Characteristic of Sn-3.0Ag-0.5Cu on Different Substrates at Temperatures Ranging From 503 K to 673 K, Appl. Surf. Sci., 2011, 257(11), p 4877–4884

    Article  CAS  Google Scholar 

  19. F. Gnecco, E. Ricci, S. Amore, D. Giuranno, G. Borzone, G. Zanicchi, and R. Novakovic, Wetting Behaviour and Reactivity of Lead Free Au-In-Sn and Bi-In-Sn Alloys on Copper Substrates, Int. J. Adhes. Adhes., 2007, 27(5), p 409–416

    Article  CAS  Google Scholar 

  20. R. Voitovitch, A. Mortensen, F. Hodaj, and N. Eustathopoulos, Diffusion-Limited Reactive Wetting: Study of Spreading Kinetics of Cu-Cr Alloys on Carbon, Acta Mater., 1999, 47(4), p 1117–1128

    Article  CAS  Google Scholar 

  21. G.W. Liu, F. Valenza, M.L. Muolo, G.J. Qiao, and A. Passerone, Wetting and Interfacial Behavior of Ni-Si Alloy on Different Substrates, J. Mater. Sci., 2009, 44(22), p 5990–5997

    Article  CAS  Google Scholar 

  22. L. Zang, Z. Yuan, H. Zhao, and X. Zhang, Wettability of Molten Sn-Bi-Cu Solder on Cu Substrate, Mater. Lett., 2009, 63(23), p 2067–2069

    Article  CAS  Google Scholar 

  23. J. Drelich, C. Fang, and C.L. White, Measurement of Interfacial Tension in Fluid–Fluid Systems, Encycl. Surf. Colloid Sci., 2002, 3, p 3158–3163

    Google Scholar 

  24. L. Zang, Z. Yuan, H. Xu, and B. Xu, Wetting Process and Interfacial Characteristics of Sn–3.0Ag–0.5Cu on Different Substrates at Temperatures Ranging From 503 K to 673 K, Appl. Surf. Sci., 2011, 257, p 4877–4884

    Article  CAS  Google Scholar 

  25. N. Sobczak, A. Kudyba, R. Nowak, W. Radziwill, and K. Pietrzak, Factors Affecting Wettability and Bond Strength of Solder Joint Couples, Pure Appl. Chem., 2007, 79(10), p 1755–1769

    Article  CAS  Google Scholar 

  26. J.D. Malcolm and D.D. Elliot, Interfacial Tension from Height and Diameter of a Single Sessile Drop or Captive Bubble, J. Chem. Eng., 1980, 58, p 151

    CAS  Google Scholar 

  27. J.C. Bashforth and F. Adams, An Attempt to Test the Theory of Capillary Action, Cambridge University Press, Cambridge, 1892

    Google Scholar 

  28. O. Río and A. Neumann, Axisymmetric Drop Shape Analysis: Computational Methods for the Measurement of Interfacial Properties from the Shape and Dimensions of Pendant and Sessile Drops, J. Colloid Interface Sci., 1997, 196(2), p 136–147

    Article  Google Scholar 

  29. J.J. Sundelin, S.T. Nurmi, T.K. Lepistö, and E.O. Ristolainen, Mechanical and Microstructural Properties of SnAgCu Solder Joints, Mater. Sci. Eng., A, 2006, 420(1–2), p 55–62

    Article  Google Scholar 

  30. J. Görlich, C. Oberdorfer, D. Baither, G. Schmitza, C. Reinke, and U. Wilke, The Role of Oxide Layers in Solder Joints, J. Alloy. Compd., 2010, 490, p 336–341

    Article  Google Scholar 

  31. M. Ramireza, L. Henneken, and S. Virtanen, Oxidation Kinetics of Thin Copper Films and Wetting Behaviour of Copper and Organic Solderability Preservatives (OSP) with Lead-Free Solder, Appl. Surf. Sci., 2011, 257, p 6481–6488

    Article  Google Scholar 

  32. J. Li, J. Karppinen, T. Laurila, and J.K. Kivilahti, Reliability of Lead-Free Solder Interconnections in Thermal and Power Cycling Tests, IEEE Trans. Compon. Pack Technol., 2009, 32(2), p 302–308

    Article  Google Scholar 

  33. J. Han, H. Chen, and M. Li, Role of Grain Orientation in the Failure of Sn-Based Solder Joints Under Thermomechanical Fatigue, Acta Met. Sin., 2012, 25(3), p 214–224

    CAS  Google Scholar 

  34. K. Kanlayasiri, M. Mongkolwongrojn, and T. Ariga, Influence of Indium Addition on Characteristics on Sn-03-Ag-0.7Cu Solder Alloy, J. Alloys Compd., 2009, 485(1/2), p 225–230

    Article  CAS  Google Scholar 

  35. J.-W. Yoon, B.-I. Noh, B.-K. Kim, C.-C. Shur, and S.-B. Jung, Wettability and Interfacial Reaction of Sn-Ag-Cu/Cu and Sn-Ag-Ni/Cu Solder Joints, J. Alloys Compd., 2009, 486(1/2), p 142–147

    Article  CAS  Google Scholar 

  36. L. Zhang, S.B. Xue, G. Zeng, L.L. Gao, and H. Ye, Interface Reaction Between SnAgCu/SnAgCuCe Solders and Cu Substrate Subjected to Thermal Cycling and Isothermal Aging, J. Alloy. Compd., 2012, 510(1), p 38–45

    Article  CAS  Google Scholar 

  37. T. Gancarz, Density, Surface Tension and Viscosity of Ga-Sn Alloys, J. Mol. Liq., 2017, 241, p 231–236

    Article  CAS  Google Scholar 

  38. A. Zdziennicka, K. Szymczyk, J. Krawczyk, and B. Janczuk, Some Remarks on the Solid Surface Tension Determination From Contact Angle Measurements, Appl. Surf. Sci., 2017, 405, p 88–101

    Article  CAS  Google Scholar 

  39. H. Tavana and A.W. Neumann, Recent Progress in the Determination of Solid Surface Tensions from Contact Angles, Adv. Coll. Interface. Sci., 2007, 132, p 1–32

    Article  CAS  Google Scholar 

  40. V. Sklyarchuka, Y. Plevachuka, I. Kabanb, and R. Novakovićc, Surface Properties and Wetting Behaviour of Liquid Ag-Sb-Sn Alloys, J. Min. Metall. Sect. B Metall., 2012, 48(3), p 443–448

    Article  Google Scholar 

  41. Z. Moser, W. Gasior, A. Debski, and J. Pstrus, SURDAT—Database of Physical Properties of Lead-Free Solders, J. Min. Metall. Sect. B Metall., 2007, 43(2), p 125–130

    Article  Google Scholar 

  42. T. Tanaka, K. Hack, T. Lida, and S. Hara, Application of Thermodynamic Databases to the Evaluation of Surface Tensions of Molten Alloys, Salt Mixtures and Oxide Mixtures, Z. Metall., 1996, 875, p 380–389

    Google Scholar 

  43. J. Lee, W. Shimoda, and T. Tanaka, Surface Tension and its Temperature Coefficient of Liquid Sn_X (X = Ag, Cu) Alloys, Mater. Trans., 2004, 45(9), p 2864–2870

    Article  CAS  Google Scholar 

  44. T. Hetschel, K. Wolter, F. Phillipp, R.B. Gmbh, Wettability Effects of Immersion Tin Final Finishes with Lead Free Solder, in Electronics System-Integration Technology Conference, 2008. ESTC 2008, 2nd (2008)

  45. P. Protsenko, A. Terlain, V. Traskine, and N. Eustathopoulos, The Role of Intermetallics in Wetting in Metallic Systems, Scr. Mater., 2001, 45, p 1439–1445

    Article  CAS  Google Scholar 

  46. O. Dezellus and N. Eustathopoulos, Fundamental Issues of Reactive Wetting by Liquid Metals, J. Mater. Sci., 2010, 45(16), p 4256–4264

    Article  CAS  Google Scholar 

  47. K. Suganuma, Advances in Lead-Free Electronics Soldering, Curr. Opin. Solid State Mater. Sci., 2001, 5, p 55–64

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by FCT with the reference Project UID/EEA/04436/2013, Compete 2020 with the Code POCI-01-0145-FEDER-006941 and project in co-promotion No. 002814/2015 (iFACTORY 2015-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Soares.

Additional information

This article is an invited submission to JMEP selected from presentations at the Symposium “Interface Design and Modelling, Wetting and High-Temperature Capillarity,” belonging to the topic “Processing” at the European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2017), held September 17-22, 2017, in Thessaloniki, Greece, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, D., Leitão, H., Lau, C.S. et al. Effect of the Soldering Atmosphere on the Wettability Between Sn4.0Ag0.5Cu (in wt.%) Lead-Free Solder Paste and Various Substrates. J. of Materi Eng and Perform 27, 5011–5017 (2018). https://doi.org/10.1007/s11665-018-3419-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3419-2

Keywords

Navigation