Experimental and Modeling Studies on the Microstructures and Properties of Oxidized Aluminum Nitride Ceramic Substrates

  • Ye Cao
  • Haixian Xu
  • Jun Zhan
  • Hao Zhang
  • Xin Wei
  • Jianmin Wang
  • Song Cui
  • Wenming Tang


Oxidation of aluminum nitride (AlN) ceramic substrates doped with 2 wt.% Y2O3 was performed in air at temperatures ranging from 1000 to 1300 °C for various lengths of time. Microstructure, bending strength, and thermal conductivity of the oxidized AlN substrates were studied experimentally and also via mathematical models. The results show that the oxide layer formed on the AlN substrates is composed of α-Al2O3 nanocrystallines and interconnected micropores. Longitudinal and transverse cracks are induced in the oxide layer under tensile and shear stresses, respectively. Intergranular oxidation of the AlN grains close to the oxide layer/AlN interface also occurs, leading to widening and cracking of the AlN grain boundaries. These processes result in the monotonous degradation of bending strength and thermal conductivity of the oxidized AlN substrates. Two mathematic models concerning these properties of the oxidized AlN substrates versus the oxide layer thickness were put forward. They fit well with the experimental results.


aluminum nitride mechanical strength microstructure oxidation thermal conductivity 



This work was financially supported by Projects of Scientific and Technological Research, Anhui Province, China (Grants Nos. 15czz02047, 1604a0902162).


  1. 1.
    K.A. Khor, L.G. Yu, and Y. Murakoshi, Spark Plasma Sintering of Sm2O3-doped Aluminum Nitride, J. Eur. Ceram. Soc., 2005, 25, p 1057–1065CrossRefGoogle Scholar
  2. 2.
    J. Schulz-Harder, Advantages and New Development of Direct Bonded Copper Substrates, Microelectron. Reliab., 2003, 43, p 359–365CrossRefGoogle Scholar
  3. 3.
    W. Grzesiak, P. MaćKów, T. Maj, B. Synkiewicz, K. Witek, R. Kisiel, M. Myśliwiec, J. Borecki, T. Serzysko, and M. Żupnik, Application of Direct Bonded Copper Substrates for Prototyping of Power Electronic Modules, Circuit World, 2016, 42, p 23–31CrossRefGoogle Scholar
  4. 4.
    W.M. Yim and R.J. Paff, Thermal Expansion of AlN, Sapphire, and Silicon, J. Appl. Phys., 1974, 45, p 1456–1457CrossRefGoogle Scholar
  5. 5.
    J. Zhan, Y. Cao, H. Zhang, J. Guo, J.H. Zhang, C.L. Geng, C.D. Shi, S. Cui, and W.M. Tang, Low-temperature Sintering of AlN Ceramics by Sm2O3-Y2O3-CaO Sintering Additives Formed via Decomposition of Nitrate Solutions, J. Mater. Eng. Perform., 2017, 26, p 453–459CrossRefGoogle Scholar
  6. 6.
    C.T. Yeh and W.H. Tuan, Accelerating the Oxidation Rate of AlN Substrate through the Addition of Water Vapor, J. Asian Ceram. Soc., 2017, 5, p 381–384CrossRefGoogle Scholar
  7. 7.
    C.T. Yeh and W.H. Tuan, Pre-oxidation of AlN Substrates for Subsequent Metallization, J. Mater. Sci.: Mater. Electron., 2015, 26, p 5910–5916Google Scholar
  8. 8.
    H.E. Kim and A.J. Moorhead, Oxidation Behavior and Flexural Strength of Aluminum Nitride Exposed to Air at Elevated Temperatures, J. Am. Ceram. Soc., 1994, 77, p 1037–1041CrossRefGoogle Scholar
  9. 9.
    C.W. Cao, Y.B. Feng, T. Qiu, and T. Liang, Surface Oxidation and Metallization of AlN Ceramics by Mo-Mn Process, J. Syn. Cryst., 2017, 46, p 416–421Google Scholar
  10. 10.
    C.T. Yeh and W.H. Tuan, Oxidation Mechanism of Aluminum Nitride Revisited, J. Adv. Ceram., 2017, 6, p 27–32CrossRefGoogle Scholar
  11. 11.
    C. Xu and W. Gao, Pilling–Bedworth Ratio for Oxidation of Alloys, Mater. Res. Innov., 2000, 3, p 231–235CrossRefGoogle Scholar
  12. 12.
    E.W. Osborne and M.G. Norton, Oxidation of Aluminium Nitride [J], J. Mater. Sci., 1998, 33, p 3859–3865CrossRefGoogle Scholar
  13. 13.
    M.D. Drory, M.D. Thouless, and A.G. Evans, On the Decohesion of Residually Stressed Thin Films, Acta Metall., 1988, 36, p 2019–2028CrossRefGoogle Scholar
  14. 14.
    M.D. Drory and A.G. Evans, Experimental Observations of Substrate Fracture Caused by Residually Stressed Films, J. Am. Ceram. Soc., 1990, 73, p 634–638CrossRefGoogle Scholar
  15. 15.
    C.W. Cao, Y.B. Feng, T. Qiu, J. Yang, X.Y. Li, T. Liang, and J. Li, Effects of Isothermal Annealing on the Oxidation Behavior, Mechanical and Thermal Properties of AlN Ceramics, Ceram. Int., 2017, 43, p 9334–9342CrossRefGoogle Scholar
  16. 16.
    R.C. West, CRC Handbook of Chemistry and Physics, CPC Press Inc, Boca Raton, 1982Google Scholar
  17. 17.
    J.Y. Wu, F. Chen, Q. Shen, and L.M. Zhang, Effect of Thermal Conductivity and Analytical Calculation Method of Effective Thermal Conductivity for Porous Ceramics, Adv. Ceram., 2011, 4, p 13–16Google Scholar
  18. 18.
    D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen: I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. der Phys., 1935, 416, p 160–178CrossRefGoogle Scholar
  19. 19.
    R. Landauer, The Electrical Resistance of Binary Metallic Mixtures, J. Appl. Phys., 1952, 23, p 779–784CrossRefGoogle Scholar
  20. 20.
    Z.D. Guan, Z.T. Zhang, and J.S. Jiao, Physical Properties of Inorganic Materials, 2nd ed., Tsinghua University Press, Beijing, 2011Google Scholar
  21. 21.
    G. Ji, Z. Chen, M.L. Wang, A. Addad, D. Schryvers, and H.W. Wang, Fabrication, Interface Characterization and Modeling of Oriented Graphite Flakes/Si/Al Composites for Thermal Management Applications, Mater. Des., 2014, 63, p 719–728CrossRefGoogle Scholar
  22. 22.
    H.V. Truong and G.E. Zinsmeister, Experimental Study of Heat Transfer in Layered Composites, Int. J. Heat Mass Trans., 1978, 21, p 905–909CrossRefGoogle Scholar
  23. 23.
    R.C. Progelhof, J.L. Throne, and R.R. Ruetsch, Methods for Predicting the Thermal Conductivity of Composite Systems: A Review, Polym. Eng. Sci., 1976, 16, p 615–625CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Ye Cao
    • 1
  • Haixian Xu
    • 2
  • Jun Zhan
    • 2
  • Hao Zhang
    • 2
  • Xin Wei
    • 1
  • Jianmin Wang
    • 1
  • Song Cui
    • 2
  • Wenming Tang
    • 1
  1. 1.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.43 InstituteChina Electronics Technology Group CorporationHefeiChina

Personalised recommendations