Investigation on Explosive Welding of Zr53Cu35Al12 Bulk Metallic Glass with Crystalline Copper

  • Jianrui Feng
  • Pengwan Chen
  • Qiang Zhou


A Zr53Cu35Al12 bulk metallic glass (BMG) was welded to a crystalline Cu using explosive welding technique. The morphology and the composition of the composite were characterized using optical microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy and transmission electron microscopy. The investigation indicated that the BMG and Cu were tightly joined together without visible defects, and a thin diffusion layer appeared at the interface. The captured jet at the end of the welding region mostly comes from the Cu side. Amorphous and partially crystallized structures have been observed within the diffusion layer, but the BMG in close proximity to the interface still retains its amorphous state. Nanoindentation tests reveal that the interface exhibits an increment in hardness compared with the matrix on both sides.


bulk metallic glass copper explosive welding microstructure nanoindentation 



The authors would like to express their thanks for the financial support of National Natural Science Foundation of China under Grants Nos. 11521062 and 11472054.


  1. 1.
    J. Schroers, Processing of Bulk Metallic Glass, Adv. Mater., 2010, 22, p 1566–1597CrossRefGoogle Scholar
  2. 2.
    W. Klement, R.H. Willens, and P. Duwez, Non-crystalline Structure in Solidified Gold-Silicon Alloys, Nature, 1960, 187, p 869–870CrossRefGoogle Scholar
  3. 3.
    W.H. Wang, C. Dong, and C.H. Shek, Bulk Metallic Glasses, Mater. Sci. Eng. R-Rep., 2004, 44, p 45–89CrossRefGoogle Scholar
  4. 4.
    E. Pekarskaya, C. Kim, and W. Johnson, In Situ Transmission Electron Microscopy Studies of Shear Bands in a Bulk Metallic Glass Based Composite, J. Mater. Res., 2001, 16, p 2513–2518CrossRefGoogle Scholar
  5. 5.
    B. Yang, M.L. Morrison, P.K. Liaw, R.A. Buchanan, G. Wang, C.T. Liu, and M. Denda, Dynamic Evolution of Nanoscale Shear Bands in a Bulk-Metallic Glass, Appl. Phys. Lett., 2005, 86, p 141904CrossRefGoogle Scholar
  6. 6.
    Y.Y. Zhu, G.L. Liao, T.L. Shi, Z.R. Tang, and M. Li, Interdiffusion Cross Crystal-Amorphous Interface: An Atomistic Simulation, Acta Mater., 2016, 112, p 378–389CrossRefGoogle Scholar
  7. 7.
    A. Chiba, Y. Kawamura, and M. Nishida, Explosive Welding of ZrTiCuNiBe Bulk Metallic Glass to Crystalline Metallic Plates, Mater. Sci. Forum, 2008, 566, p 119–124CrossRefGoogle Scholar
  8. 8.
    A. Chiba, Y. Kawamura, M. Nishida, and T. Yamamuro, Explosive Welding of ZrTiCuNiBe Bulk Metallic Glass to Crystalline Cu Plate, Mater. Sci. Forum, 2011, 673, p 119–124CrossRefGoogle Scholar
  9. 9.
    K.X. Liu, W.D. Liu, J.T. Wang, H.H. Yan, X.J. Li, Y.J. Huang, X.S. Wei, and J. Shen, Atomic-Scale Bonding of Bulk Metallic Glass to Crystalline Aluminum, Appl. Phys. Lett., 2008, 93, p 081918CrossRefGoogle Scholar
  10. 10.
    M.Q. Jiang, B.M. Huang, Z.J. Jiang, C. Lu, and L.H. Dai, Joining of Bulk Metallic Glass to Brass by Thick-Walled Cylinder Explosion, Scripta Mater., 2015, 97, p 17–20CrossRefGoogle Scholar
  11. 11.
    N.H. Tariq, M. Shakil, B.A. Hasan, J.I. Akhter, M.A. Haq, and N.A. Awan, Electron Beam Brazing of Zr62Al13Ni7Cu18 Bulk Metallic Glass with Ti Metal, Vacuum, 2014, 101, p 98–101CrossRefGoogle Scholar
  12. 12.
    J. Kim and Y. Kawamura, Electron Beam Welding Of The Dissimilar Zr-Based Bulk Metallic Glass and Ti Metal, Scripta Mater., 2007, 56, p 709–712CrossRefGoogle Scholar
  13. 13.
    J. Kim and Y. Kawamura, Dissimilar Welding of Zr41Be23Ti14Cu12Ni10 Bulk Metallic Glass and Stainless Steel, Scripta Mater., 2011, 65, p 1033–1036CrossRefGoogle Scholar
  14. 14.
    R. Bhowmick, S. Bysakh, Y. Kawamura, M. Yamasaki, U. Ramamurty, and K. Chattopadhyay, Microstructure and Mechanical Properties of Electron Beam Weld Joints of a Zr41Ti14Cu12Ni10Be23 Bulk Metallic Glass with Zr, J. Mater. Res., 2007, 22, p 437–444CrossRefGoogle Scholar
  15. 15.
    F.P. Li, D.C. Zhang, Z.C. Luo, C.G. Tan, and J.G. Lin, Microstructure and Mechanical Properties of Friction Stir Welded Joint of Zr46Cu46Al8 Bulk Metallic Glass with Pure Aluminum, Mater. Sci. Eng. A, 2013, 588, p 196–200CrossRefGoogle Scholar
  16. 16.
    H.S. Shin and Y.C. Jung, Characteristics of Dissimilar Friction Stir Spot Welding of Bulk Metallic Glass to Lightweight Crystalline Metals, Intermetallics, 2010, 18, p 2000–2004CrossRefGoogle Scholar
  17. 17.
    Y.F. Sun and H. Fujii, Microstructure and Mechanical Properties of Dissimilar Spot Friction Stir Welded Zr55Cu30Al10Ni5 Bulk Metallic Glass to Pure Copper, Intermetallics, 2013, 33, p 113–119CrossRefGoogle Scholar
  18. 18.
    Y.F. Sun, Y. Ji, H. Fujii, K. Nakata, and K. Nogi, Microstructure and Mechanical Properties of Friction Stir Welded Joint of Zr55Cu30Al10Ni5 Bulk Metallic Glass with Pure Copper, Mater. Sci. Eng. A, 2010, 527, p 3427–3432CrossRefGoogle Scholar
  19. 19.
    H.S. Wang, H.G. Chen, J.S. Jang, D.Y. Lin, and J.W. Gu, Interfacial Analysis of the Ex-Situ Reinforced Phase of a Laser Spot Welded Zr-Based Bulk Metallic Glass Composite, Mater. Charact., 2013, 86, p 242–249CrossRefGoogle Scholar
  20. 20.
    B. Crossland, Explosive Welding of Metals and Its Applications, Oxford University Press, Oxford, 1982Google Scholar
  21. 21.
    T.Z. Blazynski, Explosive Welding, Forming and Compaction, Applied science Publishers, London, 1985Google Scholar
  22. 22.
    P.W. Chen, J.R. Feng, Q. Zhou, E.F. An, J.B. Li, Y. Yuan, and S.L. Ou, Investigation on the Explosive Welding of 1100 Aluminum Alloy and AZ31 Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25(7), p 2635–2641CrossRefGoogle Scholar
  23. 23.
    B. Gulenc, Investigation of Interface Properties and Weldability of Aluminum and Copper Plates by Explosive Welding Method, Mater. Design, 2008, 29(1), p 275–278CrossRefGoogle Scholar
  24. 24.
    P. Manikandan, K. Hokamoto, A.A. Deribas, K. Raghukandan, and R. Tomoshige, Explosive Welding of Titanium/Stainless Steel by Controlling Energetic Conditions, Mater. Trans., 2006, 47(8), p 2049–2055CrossRefGoogle Scholar
  25. 25.
    M.H. Bina, F. Dehghani, and M. Salimi, Effect of Heat Treatment on Bonding Interface in Explosive Welded Copper/Stainless Steel, Mater. Design, 2013, 45, p 504–509CrossRefGoogle Scholar
  26. 26.
    P. Manikandan, J.O. Lee, K. Mizumachi, A. Mori, K. Raghukandan, and K. Hokamoto, Underwater Explosive Welding of Thin Tungsten Foils and Copper, J. Nucl. Mater., 2011, 418(1–3), p 281–285CrossRefGoogle Scholar
  27. 27.
    W. Sun, X.J. Li, and K. Hokamoto, Fabrication of Graded Density Impactor Via Underwater Shock Wave and Quasi-Isentropic Compression Testing at Two-Stage Gas Gun Facility, Appl. Phys. A-Mater., 2014, 117(4), p 1941–1946CrossRefGoogle Scholar
  28. 28.
    M.M. Trexler, and N.N. Thadhani, Mechanical Properties of Bulk Metallic Glasses, Prog. Mater. Sci., 2010, 55, p 759–839CrossRefGoogle Scholar
  29. 29.
    M. Martin, T. Sekine, T. Kobayashi, L. Kecskes, and N.N. Thadhani, High-Pressure Equation of the State of a Zirconium-Based Bulk Metallic Glass, Metall. Mater. Trans. A., 2007, 38, p 2689–2695CrossRefGoogle Scholar
  30. 30.
    A.A. Akbari Mousavia and S.T.S. Al-Hassani, Numerical and Experimental Studies of the Mechanism of the Wavy Interface Formations in Explosive/Impact Welding, J. Mech. Phys. Solids, 2005, 53, p 2501–2528CrossRefGoogle Scholar
  31. 31.
    X.J. Li, F. Mo, X.H. Wang, B. Wang, and K.X. Liu, Numerical Study on Mechanism of Explosive Welding, Sci. Technol. Weld. Joi., 2012, 17, p 36–41CrossRefGoogle Scholar
  32. 32.
    X. Wang, Y.Y. Zheng, H.X. Liu, Z.B. Shen, Y. Hu, W. Li, Y.Y. Gao, and C. Guo, Numerical Study of the Mechanism of Explosive/Impact Welding Using Smoothed Particle Hydrodynamics Method, Mater. Design, 2012, 35, p 210–219CrossRefGoogle Scholar
  33. 33.
    B. Arman, S.N. Luo, T.C. Germann, and T. Cagin, Dynamic Response of Cu46Zr54 Metallic Glass to High-Strain-Rate Shock Loading: Plasticity, Spall, and Atomic-Level Structures, Phys. Rev. B, 2010, 81, p 144201CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations