Skip to main content

Advertisement

Log in

Thermophysical Properties of High-Frequency Induction Heat Sintered Graphene Nanoplatelets/Alumina Ceramic Functional Nanocomposites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper concerns the thermophysical properties of high-frequency induction heat (HFIH) sintered alumina ceramic nanocomposites containing various graphene nanoplatelets (GNP) concentrations. The GNP/alumina nanocomposites demonstrated high densities, fine-grained microstructures, highest fracture toughness and hardness values of 5.7 MPa m1/2 and 18.4 GPa, which found 72 and 8%, superior to the benchmarked monolithic alumina, respectively. We determine the role of GNP in tuning the microstructure and inducing toughening mechanisms in the nanocomposites. The sintered monolithic alumina exhibited thermal conductivity value of 24.8 W/mK; however, steady drops of 2, 15 and 19% were recorded after adding respective GNP contents of 0.25, 0.5 and 1.0 wt.% in the nanocomposites. In addition, a dwindling trend in thermal conductions with increasing temperatures was recorded for all sintered samples. Simulation of experimental results with proven theoretical thermal models showed the dominant role of GNP dispersions, microstructural porosity, elastic modulus and grain size in controlling the thermal transport properties of the GNP/alumina nanocomposites. Thermogravimetric analysis showed that the nanocomposite with up to 0.5 mass% of GNP is thermally stable at the temperatures greater than 875 °C. The GNP/alumina nanocomposites owning a distinctive combination of mechanical and thermal properties are promising contenders for the specific components of the aerospace engine and electronic devices having contact with elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Faoite, D. Browne, R. Franklin, and T. Kenneth Stanton, A Review of the Processing, Composition, and Temperature-Dependent Mechanical and Thermal Properties of Dielectric Technical Ceramics, J. Mater. Sci., 2012, 47, p 4211–4235

    Article  Google Scholar 

  2. K. Ahmad, P. Wei, and C. Wan, Thermal Conductivities of Alumina-Based Multiwall Carbon Nanotube Ceramic Composites, J. Mater. Sci., 2014, 49, p 6048–6055

    Article  Google Scholar 

  3. S.R. Bakshi, K. Balani, and A. Agarwal, Thermal Conductivity of Plasma-Sprayed Aluminum Oxide—Multiwalled Carbon Nanotubes Composites, J. Am. Ceram. Soc., 2008, 91, p 942–947

    Article  Google Scholar 

  4. L. Kumari and T. Zhang, Thermal Properties of CNT Alumina Nanocomposites, Compos. Sci. Technol., 2008, 68, p 2178–2183

    Article  Google Scholar 

  5. H. Porwal, S. Grasso, and M. Reece, Review of Graphene–Ceramic Matrix Composites, Adv. Appl. Ceram., 2013, 112, p 443–454

    Article  Google Scholar 

  6. Y. Fan, The Effect of Homogeneously Dispersed Few-Layer Graphene on Microstructure and Mechanical Properties of Al2O3 Nanocomposites, J. Eur. Ceram. Soc., 2014, 34, p 443–451

    Article  Google Scholar 

  7. I. Ahmad and Y.Q. Zhu, Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites, Nanomaterials, 2015, 5, p 90–114

    Article  Google Scholar 

  8. K. Wang, Preparation of Graphene Nanosheets/Alumina Composites by Spark Plasma Sintering, Mater. Res. Bull., 2011, 46, p 315–318

    Article  Google Scholar 

  9. L. Jain, Mechanical Properties of Graphene Platelets-Reinforced Alumina Ceramics Composites, Ceram. Int., 2013, 39, p 6215–6221

    Article  Google Scholar 

  10. H. Porwal, Graphene Reinforced Alumina Nano-composites, Carbon, 2013, 64, p 359–369

    Article  Google Scholar 

  11. C. Balázsi, Structural Characterization of Si3N4-Carbon Nanotube Interfaces by Transmission Electron Microscopy, Compos. Sci. Technol., 2008, 68, p 1596–1599

    Article  Google Scholar 

  12. I. Ahmad, M. Islam, T. Subhani, and Y.Q. Zhu, Toughening Mechanisms and Mechanical Properties of Graphene Nanosheet-Reinforced Alumina, Mater. Des., 2015, 88, p 1234–1243

    Article  Google Scholar 

  13. A.A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nat. Mater., 2011, 10, p 569–581

    Article  Google Scholar 

  14. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, 97, p 187401

    Article  Google Scholar 

  15. I. Calizo, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau, Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers, Nano Lett., 2007, 7, p 2645

    Article  Google Scholar 

  16. M.F. Khan and A.A. Balandin, Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials, Solid State Commun., 2012, 152, p 1331–1340

    Article  Google Scholar 

  17. I. Ahmad, M. Islam, T. Subhani, and Y.Q. Zhu, Characterization of GNP-Containing Al2O3 Nanocomposites Fabricated via High Frequency-Induction Heat Sintering Route, J. Mater. Eng. Perform., 2015, 24, p 4236–4243

    Article  Google Scholar 

  18. X. Liu, Y. Fan, J. Li, L. Wang, and W. Jiang, Preparation and Mechanical Properties of Graphene Nanosheet Reinforced Alumina Composites, Adv. Eng. Mater., 2015, 17, p 28–35

    Article  Google Scholar 

  19. K. Tonello, E. Padovano, C. Badini, S. Biamino, M. Pavese, and P. Fino, Fabrication and Characterization of Laminated SiC Composites Reinforced with Graphene Nanoplatelets, Mater. Sci. Eng., 2016, 659, p 158–164

    Article  Google Scholar 

  20. M. Belmonte, A. Nistal, P. Boutbien, B. Román-Manso, M.I. Osendi, and P. Miranzo, Toughened and Strengthened Silicon Carbide Ceramics by Adding Graphene-Based Fillers, Scr. Mater., 2016, 113, p 127–130

    Article  Google Scholar 

  21. B. Román-Manso, E. Domingues, F.M. Figueiredo, M. Belmonte, and P. Miranzo, Enhanced Electrical Conductivity of Silicon Carbide Ceramics by Addition of Graphene Nanoplatelets, J. Eur. Ceram. Soc., 2015, 35, p 2723–2731

    Article  Google Scholar 

  22. Q. Li, Y. Zhang, H. Gong, H. Sun, T. Li, X. Guo, and S. Ai, Effects of Graphene on the Thermal Conductivity of Pressureless-Sintered SiC Ceramics, Ceram. Int., 2015, 41, p p13547–p13552

    Article  Google Scholar 

  23. L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, and E.L. Corral, Toughening in Graphene Ceramic Composites, ACS Nano, 2011, 5, p 3182–3190

    Article  Google Scholar 

  24. P. Kun, O. Tapasztó, F. Wéber, and C. Balázsi, Determination of Structural and Mechanical Properties of Multilayer Graphene Added Silicon Nitride-Based Composites, Ceram. Int., 2012, 38, p 211–216

    Article  Google Scholar 

  25. Y. Çelik, A. Çelik, E. Flahaut, and E. Suvaci, Anisotropic Mechanical and Functional Properties of Graphene-Based Alumina Matrix Nanocomposites, J. Eur. Ceram. Soc., 2016, 36, p 2075–2086

    Article  Google Scholar 

  26. P. Rutkowski, W. Piekarczyk, L. Stobierski, and G. Górny, Anisotropy of Elastic Properties and Thermal Conductivity of Al2O3/h-BN Composites, J. Therm. Anal. Calorim., 2013, 115, p 461–466

    Article  Google Scholar 

  27. P. Rutkowski, L. Stobierski, and G. Górny, Thermal Stability and Conductivity of Hot-Pressed Si3N4–Graphene Composites, J. Therm. Anal. Calorim., 2014, 116, p 321–328

    Article  Google Scholar 

  28. I. Ahmad, M. Islam, T. Subhani, and Y.Q. Zhu, Toughness Enhancement in Graphene Nanoplatelet/SiC Reinforced Al2O3 Ceramic Hybrid Nanocomposites, Nanotechnology, 2016, 27, p 42

    Google Scholar 

  29. S.W. Kim and A.R. Khalil, High-Frequency Induction Heat Sintering of Mechanically Alloyed Alumina–Yttria-Stabilized Zirconia Nano-bioceramics, J. Am. Ceram. Soc., 2006, 89, p 1280–1285

    Article  Google Scholar 

  30. W.S. Hummers and R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. , 1958, 80, p 1339–1340

    Article  Google Scholar 

  31. I. Barin, Thermochemical Data of Pure Substances, VCH, Weinheim, 1993

    Google Scholar 

  32. N. Takeshi and I. Tadao, Temperature Dependence of Lattice Vibrations and Analysis of the Specific Heat of Graphite, Phys. Rev., 2003, 68, p 399–404

    Google Scholar 

  33. A. Lerf, H. He, M. Forster, and J. Klinowski, Structure of Graphite Oxide Revisited, J. Phys. Chem., 1998, 102, p 4477–4482

    Article  Google Scholar 

  34. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, and I.A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Phys. Chem., 2006, 110, p 8535–8539

    Article  Google Scholar 

  35. H.C. Hsu and W.H. Tuan, Thermal Characteristics of a Two-Phase Composite, Adv. Powder Technol., 2016, 27, p 929–934

    Article  Google Scholar 

  36. M.F. Ashby, Criteria for Selecting the Components of Composites, Acta Metall. Mater., 1993, 41, p 1313–1335

    Article  Google Scholar 

  37. J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, and A. Zurutuza, Anisotropy of Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature, Adv. Funct. Mater., 2015, 25, p 4664–4672

    Article  Google Scholar 

  38. H. Ondrej, S. Jaroslav, H. Eva, and S. Pavol, Thermal Properties of Alumina–MWCNTs Composites, J. Am. Eur. Ceram. Soc., 2015, 35, p 1559–1567

    Article  Google Scholar 

  39. E. Çelik and A.K. Roy, Thermal Properties of Graphene: Fundamentals and Applications, MRS Bull., 2012, 37, p 1273–1281

    Article  Google Scholar 

  40. S.R. Wang, M. Tambraparni, J.J. Qiu, J. Tipton, and D. Dean, Thermal Expansion of Graphene Composites, Macromolecules, 2009, 42, p 5251–5255

    Article  Google Scholar 

  41. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 173, p 25–28

    Google Scholar 

  42. C.J. Lin, I.C. Lin, and W.H. Tuan, Effect of Graphene Concentration on Thermal Properties of Alumina–Graphene Composites Formed Using Spark Plasma Sintering, J. Mater. Sci., 2017, 52, p 1759–1766

    Article  Google Scholar 

  43. K.W. Schlichting, N.P. Padture, and P.G. Klemens, Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia, J. Mater. Sci., 2001, 36, p 3003–3010

    Article  Google Scholar 

  44. B.K. Jang and Y. Sakka, Influence of Microstructure on the Thermophysical Properties of Sintered SiC Ceramics, J. Alloys. Compd., 2008, 463, p 493–497

    Article  Google Scholar 

  45. D.R. Clarke, Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 163, p 67–74

    Article  Google Scholar 

  46. S.C. Zhang, W.G. Fahrenholtz, G.E. Hilmas, and E.J. Yadlowsky, Pressureless Sintering of Carbon Nanotube-Al2O3 Composites, J. Eur. Ceram. Soc., 2010, 30, p 33–35

    Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Research Group Project No. RG-1437-028.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Subhani, T., Wang, N. et al. Thermophysical Properties of High-Frequency Induction Heat Sintered Graphene Nanoplatelets/Alumina Ceramic Functional Nanocomposites. J. of Materi Eng and Perform 27, 2949–2959 (2018). https://doi.org/10.1007/s11665-018-3395-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3395-6

Keywords

Navigation