Thermophysical Properties of High-Frequency Induction Heat Sintered Graphene Nanoplatelets/Alumina Ceramic Functional Nanocomposites

  • Iftikhar Ahmad
  • Tayyab Subhani
  • Nannan Wang
  • Yanqiu Zhu
Article
  • 19 Downloads

Abstract

This paper concerns the thermophysical properties of high-frequency induction heat (HFIH) sintered alumina ceramic nanocomposites containing various graphene nanoplatelets (GNP) concentrations. The GNP/alumina nanocomposites demonstrated high densities, fine-grained microstructures, highest fracture toughness and hardness values of 5.7 MPa m1/2 and 18.4 GPa, which found 72 and 8%, superior to the benchmarked monolithic alumina, respectively. We determine the role of GNP in tuning the microstructure and inducing toughening mechanisms in the nanocomposites. The sintered monolithic alumina exhibited thermal conductivity value of 24.8 W/mK; however, steady drops of 2, 15 and 19% were recorded after adding respective GNP contents of 0.25, 0.5 and 1.0 wt.% in the nanocomposites. In addition, a dwindling trend in thermal conductions with increasing temperatures was recorded for all sintered samples. Simulation of experimental results with proven theoretical thermal models showed the dominant role of GNP dispersions, microstructural porosity, elastic modulus and grain size in controlling the thermal transport properties of the GNP/alumina nanocomposites. Thermogravimetric analysis showed that the nanocomposite with up to 0.5 mass% of GNP is thermally stable at the temperatures greater than 875 °C. The GNP/alumina nanocomposites owning a distinctive combination of mechanical and thermal properties are promising contenders for the specific components of the aerospace engine and electronic devices having contact with elevated temperatures.

Keywords

ceramics interfaces microstructure nanocomposites sintering thermal analysis 

Notes

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Research Group Project No. RG-1437-028.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    D. Faoite, D. Browne, R. Franklin, and T. Kenneth Stanton, A Review of the Processing, Composition, and Temperature-Dependent Mechanical and Thermal Properties of Dielectric Technical Ceramics, J. Mater. Sci., 2012, 47, p 4211–4235CrossRefGoogle Scholar
  2. 2.
    K. Ahmad, P. Wei, and C. Wan, Thermal Conductivities of Alumina-Based Multiwall Carbon Nanotube Ceramic Composites, J. Mater. Sci., 2014, 49, p 6048–6055CrossRefGoogle Scholar
  3. 3.
    S.R. Bakshi, K. Balani, and A. Agarwal, Thermal Conductivity of Plasma-Sprayed Aluminum Oxide—Multiwalled Carbon Nanotubes Composites, J. Am. Ceram. Soc., 2008, 91, p 942–947CrossRefGoogle Scholar
  4. 4.
    L. Kumari and T. Zhang, Thermal Properties of CNT Alumina Nanocomposites, Compos. Sci. Technol., 2008, 68, p 2178–2183CrossRefGoogle Scholar
  5. 5.
    H. Porwal, S. Grasso, and M. Reece, Review of Graphene–Ceramic Matrix Composites, Adv. Appl. Ceram., 2013, 112, p 443–454CrossRefGoogle Scholar
  6. 6.
    Y. Fan, The Effect of Homogeneously Dispersed Few-Layer Graphene on Microstructure and Mechanical Properties of Al2O3 Nanocomposites, J. Eur. Ceram. Soc., 2014, 34, p 443–451CrossRefGoogle Scholar
  7. 7.
    I. Ahmad and Y.Q. Zhu, Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites, Nanomaterials, 2015, 5, p 90–114CrossRefGoogle Scholar
  8. 8.
    K. Wang, Preparation of Graphene Nanosheets/Alumina Composites by Spark Plasma Sintering, Mater. Res. Bull., 2011, 46, p 315–318CrossRefGoogle Scholar
  9. 9.
    L. Jain, Mechanical Properties of Graphene Platelets-Reinforced Alumina Ceramics Composites, Ceram. Int., 2013, 39, p 6215–6221CrossRefGoogle Scholar
  10. 10.
    H. Porwal, Graphene Reinforced Alumina Nano-composites, Carbon, 2013, 64, p 359–369CrossRefGoogle Scholar
  11. 11.
    C. Balázsi, Structural Characterization of Si3N4-Carbon Nanotube Interfaces by Transmission Electron Microscopy, Compos. Sci. Technol., 2008, 68, p 1596–1599CrossRefGoogle Scholar
  12. 12.
    I. Ahmad, M. Islam, T. Subhani, and Y.Q. Zhu, Toughening Mechanisms and Mechanical Properties of Graphene Nanosheet-Reinforced Alumina, Mater. Des., 2015, 88, p 1234–1243CrossRefGoogle Scholar
  13. 13.
    A.A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nat. Mater., 2011, 10, p 569–581CrossRefGoogle Scholar
  14. 14.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, 97, p 187401CrossRefGoogle Scholar
  15. 15.
    I. Calizo, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau, Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers, Nano Lett., 2007, 7, p 2645CrossRefGoogle Scholar
  16. 16.
    M.F. Khan and A.A. Balandin, Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials, Solid State Commun., 2012, 152, p 1331–1340CrossRefGoogle Scholar
  17. 17.
    I. Ahmad, M. Islam, T. Subhani, and Y.Q. Zhu, Characterization of GNP-Containing Al2O3 Nanocomposites Fabricated via High Frequency-Induction Heat Sintering Route, J. Mater. Eng. Perform., 2015, 24, p 4236–4243CrossRefGoogle Scholar
  18. 18.
    X. Liu, Y. Fan, J. Li, L. Wang, and W. Jiang, Preparation and Mechanical Properties of Graphene Nanosheet Reinforced Alumina Composites, Adv. Eng. Mater., 2015, 17, p 28–35CrossRefGoogle Scholar
  19. 19.
    K. Tonello, E. Padovano, C. Badini, S. Biamino, M. Pavese, and P. Fino, Fabrication and Characterization of Laminated SiC Composites Reinforced with Graphene Nanoplatelets, Mater. Sci. Eng., 2016, 659, p 158–164CrossRefGoogle Scholar
  20. 20.
    M. Belmonte, A. Nistal, P. Boutbien, B. Román-Manso, M.I. Osendi, and P. Miranzo, Toughened and Strengthened Silicon Carbide Ceramics by Adding Graphene-Based Fillers, Scr. Mater., 2016, 113, p 127–130CrossRefGoogle Scholar
  21. 21.
    B. Román-Manso, E. Domingues, F.M. Figueiredo, M. Belmonte, and P. Miranzo, Enhanced Electrical Conductivity of Silicon Carbide Ceramics by Addition of Graphene Nanoplatelets, J. Eur. Ceram. Soc., 2015, 35, p 2723–2731CrossRefGoogle Scholar
  22. 22.
    Q. Li, Y. Zhang, H. Gong, H. Sun, T. Li, X. Guo, and S. Ai, Effects of Graphene on the Thermal Conductivity of Pressureless-Sintered SiC Ceramics, Ceram. Int., 2015, 41, p p13547–p13552CrossRefGoogle Scholar
  23. 23.
    L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, and E.L. Corral, Toughening in Graphene Ceramic Composites, ACS Nano, 2011, 5, p 3182–3190CrossRefGoogle Scholar
  24. 24.
    P. Kun, O. Tapasztó, F. Wéber, and C. Balázsi, Determination of Structural and Mechanical Properties of Multilayer Graphene Added Silicon Nitride-Based Composites, Ceram. Int., 2012, 38, p 211–216CrossRefGoogle Scholar
  25. 25.
    Y. Çelik, A. Çelik, E. Flahaut, and E. Suvaci, Anisotropic Mechanical and Functional Properties of Graphene-Based Alumina Matrix Nanocomposites, J. Eur. Ceram. Soc., 2016, 36, p 2075–2086CrossRefGoogle Scholar
  26. 26.
    P. Rutkowski, W. Piekarczyk, L. Stobierski, and G. Górny, Anisotropy of Elastic Properties and Thermal Conductivity of Al2O3/h-BN Composites, J. Therm. Anal. Calorim., 2013, 115, p 461–466CrossRefGoogle Scholar
  27. 27.
    P. Rutkowski, L. Stobierski, and G. Górny, Thermal Stability and Conductivity of Hot-Pressed Si3N4–Graphene Composites, J. Therm. Anal. Calorim., 2014, 116, p 321–328CrossRefGoogle Scholar
  28. 28.
    I. Ahmad, M. Islam, T. Subhani, and Y.Q. Zhu, Toughness Enhancement in Graphene Nanoplatelet/SiC Reinforced Al2O3 Ceramic Hybrid Nanocomposites, Nanotechnology, 2016, 27, p 42Google Scholar
  29. 29.
    S.W. Kim and A.R. Khalil, High-Frequency Induction Heat Sintering of Mechanically Alloyed Alumina–Yttria-Stabilized Zirconia Nano-bioceramics, J. Am. Ceram. Soc., 2006, 89, p 1280–1285CrossRefGoogle Scholar
  30. 30.
    W.S. Hummers and R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. , 1958, 80, p 1339–1340CrossRefGoogle Scholar
  31. 31.
    I. Barin, Thermochemical Data of Pure Substances, VCH, Weinheim, 1993Google Scholar
  32. 32.
    N. Takeshi and I. Tadao, Temperature Dependence of Lattice Vibrations and Analysis of the Specific Heat of Graphite, Phys. Rev., 2003, 68, p 399–404Google Scholar
  33. 33.
    A. Lerf, H. He, M. Forster, and J. Klinowski, Structure of Graphite Oxide Revisited, J. Phys. Chem., 1998, 102, p 4477–4482CrossRefGoogle Scholar
  34. 34.
    H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, and I.A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Phys. Chem., 2006, 110, p 8535–8539CrossRefGoogle Scholar
  35. 35.
    H.C. Hsu and W.H. Tuan, Thermal Characteristics of a Two-Phase Composite, Adv. Powder Technol., 2016, 27, p 929–934CrossRefGoogle Scholar
  36. 36.
    M.F. Ashby, Criteria for Selecting the Components of Composites, Acta Metall. Mater., 1993, 41, p 1313–1335CrossRefGoogle Scholar
  37. 37.
    J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, and A. Zurutuza, Anisotropy of Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature, Adv. Funct. Mater., 2015, 25, p 4664–4672CrossRefGoogle Scholar
  38. 38.
    H. Ondrej, S. Jaroslav, H. Eva, and S. Pavol, Thermal Properties of Alumina–MWCNTs Composites, J. Am. Eur. Ceram. Soc., 2015, 35, p 1559–1567CrossRefGoogle Scholar
  39. 39.
    E. Çelik and A.K. Roy, Thermal Properties of Graphene: Fundamentals and Applications, MRS Bull., 2012, 37, p 1273–1281CrossRefGoogle Scholar
  40. 40.
    S.R. Wang, M. Tambraparni, J.J. Qiu, J. Tipton, and D. Dean, Thermal Expansion of Graphene Composites, Macromolecules, 2009, 42, p 5251–5255CrossRefGoogle Scholar
  41. 41.
    N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 173, p 25–28Google Scholar
  42. 42.
    C.J. Lin, I.C. Lin, and W.H. Tuan, Effect of Graphene Concentration on Thermal Properties of Alumina–Graphene Composites Formed Using Spark Plasma Sintering, J. Mater. Sci., 2017, 52, p 1759–1766CrossRefGoogle Scholar
  43. 43.
    K.W. Schlichting, N.P. Padture, and P.G. Klemens, Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia, J. Mater. Sci., 2001, 36, p 3003–3010CrossRefGoogle Scholar
  44. 44.
    B.K. Jang and Y. Sakka, Influence of Microstructure on the Thermophysical Properties of Sintered SiC Ceramics, J. Alloys. Compd., 2008, 463, p 493–497CrossRefGoogle Scholar
  45. 45.
    D.R. Clarke, Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 163, p 67–74CrossRefGoogle Scholar
  46. 46.
    S.C. Zhang, W.G. Fahrenholtz, G.E. Hilmas, and E.J. Yadlowsky, Pressureless Sintering of Carbon Nanotube-Al2O3 Composites, J. Eur. Ceram. Soc., 2010, 30, p 33–35Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Iftikhar Ahmad
    • 1
  • Tayyab Subhani
    • 2
  • Nannan Wang
    • 3
  • Yanqiu Zhu
    • 3
  1. 1.Center of Excellence for Research in Engineering MaterialsKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Composite Research Center, Department of Materials Science and EngineeringInstitute of Space TechnologyIslamabadPakistan
  3. 3.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations