Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600

  • A. Telang
  • T. Gnäupel-Herold
  • A. Gill
  • V. K. Vasudevan
Article

Abstract

In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.

Keywords

cavitation jet peening laser shock peening non-ferrous metals residual stress surface treatments x-ray 

Notes

Acknowledgments

We acknowledge the support of the Center for Neutron Research, National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. The authors are grateful for financial support of this research by the Nuclear Energy University Program (NEUP) of the US Department of Energy Contract #102835 issued under Prime Contract DE-AC07-05ID14517 to Battelle Energy Alliance, LLC. We also gratefully acknowledge the contribution of the State of Ohio, Department of Development and Third Frontier Commission, which provided funding in support of “Ohio Center for Laser Shock Processing for Advanced Materials and Devices” equipment in the Center that was used in this work. The authors would also like to thank Professor Hitoshi Soyama and Dr. Osamu Takakuwa at Tohoku University for the CSP-treating Alloy 600 samples. Any opinions, findings, conclusions, or recommendations expressed in these documents are those of the author(s) and do not necessarily reflect the views of the DOE or the State of Ohio, Department of Development.

References

  1. 1.
    R.K. Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, and R.O. Ritchie, On the Influence of Mechanical Surface Treatments-Deep Rolling and Laser Shock Peening-on the Fatigue Behavior of Ti-6Al-4V at Ambient and Elevated Temperatures, Mater. Sci. Eng. A, 2003, 355, p 216–230CrossRefGoogle Scholar
  2. 2.
    A. Telang, A.S. Gill, S. Teysseyre, S.R. Mannava, D. Qian, and V.K. Vasudevan, Effects of Laser Shock Peening on SCC Behavior of Alloy 600 in Tetrathionate Solution, Corros. Sci., 2015, 90, p 434–444.  https://doi.org/10.1016/j.corsci.2014.10.045 CrossRefGoogle Scholar
  3. 3.
    C. Ye, S. Suslov, B.J. Kim, E.A. Stach, and G.J. Cheng, Fatigue Performance Improvement in AISI, 4140 Steel by Dynamic Strain Aging and Dynamic Precipitation During Warm Laser Shock Peening, Acta Mater., 2011, 59(3), p 1014–1025.  https://doi.org/10.1016/j.actamat.2010.10.032 CrossRefGoogle Scholar
  4. 4.
    C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J.M.K. Wiezorek, Z. Zhou, D. Qian, S. Ramaiah Mannava, and V.K. Vasudevan, Gradient Nanostructure and Residual Stresses Induced by Ultrasonic Nano-Crystal Surface Modification in 304 Austenitic Stainless Steel for High Strength and High Ductility, Mater. Sci. Eng. A, 2014, 613, p 274–288.  https://doi.org/10.1016/j.msea.2014.06.114 CrossRefGoogle Scholar
  5. 5.
    A. Gill, A. Telang, S.R. Mannava, D. Qian, Y.-S. Pyoun, H. Soyama, and V.K. Vasudevan, Comparison of Mechanisms of Advanced Mechanical Surface Treatments in Nickel-Based Superalloy, Mater. Sci. Eng. A, 2013.  https://doi.org/10.1016/j.msea.2013.04.021 Google Scholar
  6. 6.
    P. Crooker and T. Lian, Materials Reliability Program: Technical Basis for Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement (MRP-267, Revision 2), 2016.Google Scholar
  7. 7.
    C.S. Montross, T. Wei, L. Ye, G. Clark, and Y. Mai, Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys : A Review, Int. J. Fatigue, 2002, 2006(24), p 1021–1036CrossRefGoogle Scholar
  8. 8.
    I. Nikitin, B. Scholtes, H.J. Maier, and I. Altenberger, High Temperature Fatigue Behavior and Residual Stress Stability of Laser-Shock Peened and Deep Rolled Austenitic Steel AISI, 304, Scr. Mater., 2004, 50(10), p 1345–1350CrossRefGoogle Scholar
  9. 9.
    J.Z. Lu, L. Zhang, A.X. Feng, Y.F. Jiang, and G.G. Cheng, Effects of Laser Shock Processing on Mechanical Properties of Fe-Ni Alloy, Mater. Des., 2009, 30(9), p 3673–3678. http://www.sciencedirect.com/science/article/B6TX5-4VP664F-1/2/2b90b6ed0165724fa7a3870351efda6c.
  10. 10.
    P. Peyre, R. Fabbro, P. Merrien, and H.P. Lieurade, Laser Shock Processing of Aluminium Alloys. Application to High Cycle Fatigue Behaviour, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 1996, 210(1–2), p 102–113CrossRefGoogle Scholar
  11. 11.
    R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, Physics and Applications of Laser-Shock Processing, J. Laser Appl., 1998, 10(6), p 265.  https://doi.org/10.2351/1.521861 CrossRefGoogle Scholar
  12. 12.
    H. Soyama, J.D. Park, and M. Saka, Use of Cavitating Jet for Introducing Compressive Residual Stress, J. Manuf. Sci. Eng., 2000, 122(1), p 83–89. http://link.aip.org/link/?MAE/122/83/1.
  13. 13.
    H. Soyama, T. Kusaka, and M. Saka, Peening by the Use of Cavitation Impacts for the Improvement of Fatigue Strength, J. Mater. Sci. Lett., 2001, 20(13), p 1263–1265.  https://doi.org/10.1023/A:1010947528358 CrossRefGoogle Scholar
  14. 14.
    A. Telang, C. Ye, A. Gill, S. Teysseyre, S.R. Mannava, D. Qian, and V.K. Vasudevan, Effects of Laser Shock Peening on SCC Behavior of Alloy 600, 16th Int. Conf. Environ. Degrad. Mater. Nucl. Power Syst. React. Asheville, NC, 2013, 90, p 434–444.  https://doi.org/10.1016/j.corsci.2014.10.045.
  15. 15.
    T. Gnäupel-Herold, Techniques for Neutron Stress Determination with High Spatial Resolution, J. Nondestruct. Eval., 2009, 28, p 149–155CrossRefGoogle Scholar
  16. 16.
    M.B. Prime, T. Gnäupel-Herold, J.A. Baumann, R.J. Lederich, D.M. Bowden, and R.J. Sebring, Residual Stress Measurements in a Thick, Dissimilar Aluminum Alloy Friction Stir Weld, Acta Mater., 2006, 54, p 4013–4021CrossRefGoogle Scholar
  17. 17.
    T. Gnäupel-Herold, Formalism for the Determination of Intermediate Stress Gradients Using x-Ray Diffraction, J. Appl. Crystallogr., 2009, 42, p 192–197CrossRefGoogle Scholar
  18. 18.
    A. Gill, A. Telang, S.R. Mannava, D. Qian, Y.S. Pyoun, H. Soyama, and V.K. Vasudevan, Comparison of Mechanisms of Advanced Mechanical Surface Treatments in Nickel-Based Superalloy, Mater. Sci. Eng. A, 2013, 576, p 346–355CrossRefGoogle Scholar
  19. 19.
    Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki, and Y. Ochi, Retardation of Crack Initiation and Growth in Austenitic Stainless Steels by Laser Peening without Protective Coating, Mater. Sci. Eng. A, 2006, 417(1–2), p 334–340.  https://doi.org/10.1016/j.msea.2005.11.017 CrossRefGoogle Scholar
  20. 20.
    A.S. Gill, Z. Zhou, U. Lienert, J. Almer, D.F. Lahrman, S.R. Mannava, D. Qian, and V.K. Vasudevan, High Spatial Resolution, High Energy Synchrotron X-Ray Diffraction Characterization of Residual Strains and Stresses in Laser Shock Peened Inconel 718SPF Alloy, J. Appl. Phys., 2012, 111(8), p 84904. http://link.aip.org/link/?JAP/111/084904/1.
  21. 21.
    R. Menig, L. Pintschovius, V. Schulze, and O. Vöhringer, Depth Profiles of Macro Residual Stresses in Thin Shot Peened Steel Plates Determined by x-Ray and Neutron Diffraction, Scr. Mater., 2001, 45(8), p 977–983CrossRefGoogle Scholar
  22. 22.
    H. Holzapfel, V. Schulze, O. Vohringer, and E. Macherauch, Residual Stress Relaxation in an AISI, 4140 Steel Due to Quasistatic and Cyclic Loading at Higher Temperatures, Mater. Sci. Eng. A, 1998, 248, p 9–18CrossRefGoogle Scholar
  23. 23.
    Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki, and Y. Ochi, Retardation of Crack Initiation and Growth in Austenitic Stainless Steels by Laser Peening without Protective Coating, Mater. Sci. Eng. A, 2006, 417(1–2), p 334–340. http://journals.ohiolink.edu/ejc/article.cgi?issn=09215093&issue=v417i1-2&article=334_rociagblpwpc.
  24. 24.
    Y. Sano, Y. Sakino, N. Mukai, M. Obata, I. Chida, T. Uehara, M. Yoda, and Y.-C. Kim, Laser Peening without Coating to Mitigate Stress Corrosion Cracking and Fatigue Failure of Welded Components, Mater. Sci. Forum, 2008, 580–582, p 519–522CrossRefGoogle Scholar
  25. 25.
    P.J. Withers and H.K.D.H. Bhadeshia, Residual Stress Part 1—Measurement Techniques, Mater. Sci. Technol., 2001, 17(April), p 355–365CrossRefGoogle Scholar
  26. 26.
    Z. Zhou, A.S. Gill, A. Telang, S.R. Mannava, K. Langer, V.K. Vasudevan, and D. Qian, Experimental and Finite Element Simulation Study of Thermal Relaxation of Residual Stresses in Laser Shock Peened IN718 SPF Superalloy, Exp. Mech., 2014, 54(9), p 1597–1611.  https://doi.org/10.1007/s11340-014-9940-9 CrossRefGoogle Scholar
  27. 27.
    Z. Zhou, S. Bhamare, G. Ramakrishnan, S.R. Mannava, K. Langer, Y. Wen, D. Qian, and V.K. Vasudevan, Thermal Relaxation of Residual Stress in Laser Shock Peened Ti-6Al-4V Alloy, Surf. Coatings Technol., 2012, 206(22), p 4619–4627.  https://doi.org/10.1016/j.surfcoat.2012.05.022 CrossRefGoogle Scholar
  28. 28.
    T. Hashimoto, Y. Osawa, S. Itoh, M. Mochizuki, and K. Nishimoto, Long-Term Stability of Residual Stress Improvement by Water Jet Peening Considering Working Processes, J. Press. Vessel Technol., 2013, 135(3), p 316011–316018CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • A. Telang
    • 1
  • T. Gnäupel-Herold
    • 2
  • A. Gill
    • 3
  • V. K. Vasudevan
    • 1
  1. 1.Department of Mechanical and Materials EngineeringUniversity of CincinnatiCincinnatiUSA
  2. 2.NIST Center for Neuron ResearchGaithersburgUSA
  3. 3.AK Steel Research CenterMiddletownUSA

Personalised recommendations