Advertisement

Quantified Differentiation of Surface Topography for Nano-materials As-Obtained from Atomic Force Microscopy Images

Article
  • 31 Downloads

Abstract

Surface texture is an important issue to realize the nature (crest and trough) of surfaces. Atomic force microscopy (AFM) image is a key analysis for surface topography. However, in nano-scale, the nature (i.e., deflection or crack) as well as quantification (i.e., height or depth) of deposited layers is essential information for material scientist. In this paper, a gradient-based K-means algorithm is used to differentiate the layered surfaces depending on their color contrast of as-obtained from AFM images. A transformation using wavelet decomposition is initiated to extract the information about deflection or crack on the material surfaces from the same images. Z-axis depth analysis from wavelet coefficients provides information about the crack present in the material. Using the above method corresponding surface information for the material is obtained. In addition, the Gaussian filter is applied to remove the unwanted lines, which occurred during AFM scanning. Few known samples are taken as input, and validity of the above approaches is shown.

Keywords

atomic force microscopy deflection Gaussian filter gradient K-means roughness surface texture 

References

  1. 1.
    D. Alsteens, H.E. Gaub, R. Newton, M. Pfreundschuh, C. Gerber, and D.J. Müller, Atomic Force Microscopy-Based Characterization and Design of Biointerfaces, Nat. Rev. Mater., 2017, 2, p 17008CrossRefGoogle Scholar
  2. 2.
    S.K. Samanta, L.K. Bera, and S. Chatterjee, Silicon Heteroepitaxial Layer Characterization by Atomic Force Microscopy, IETE J. Res., 2007, 53, p 185–197CrossRefGoogle Scholar
  3. 3.
    J. Adamcik, J.M. Jung, J. Flakowski, P. Rios De Los, G. Dietler, and R. Mezzenga, Understanding Amyloid Aggregation by Statistical Analysis of Atomic Force Microscopy Images, Nat. Nanotechnol., 2010, 5, p 423–428CrossRefGoogle Scholar
  4. 4.
    K.A. Ramirez-Aguilar and K.L. Rowlen, Tip Characterization from AFM Images of Nanometric Spherical Particles, Langmuir, 1989, 14, p 2562–2566CrossRefGoogle Scholar
  5. 5.
    G. Haugstad, Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications, Wiley, Hoboken, 2012CrossRefGoogle Scholar
  6. 6.
    T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y. Wu, An Efficient k-Means Clustering Algorithm: Analysis and Implementation, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, p 881–892CrossRefGoogle Scholar
  7. 7.
    A. Maksumov, V. Ruxandra, P. Ahmet, and S. Pieter, Enhanced Feature Analysis Using Wavelets for Scanning Probe Microscopy Images of Surfaces, J. Colloid Interface Sci., 2004, 272, p 365–377CrossRefGoogle Scholar
  8. 8.
    A. Arneodo, N.G.R.S. Decoster, and S.G. Roux, A Wavelet-Based Method for Multifractal Image Analysis. I. Methodology and Test Applications on Isotropic and Anisotropic Random Rough Surfaces, Eur. Phys. J. B Condens. Matter Complex Syst., 2000, 15, p 567–600CrossRefGoogle Scholar
  9. 9.
    A.K. Ray, S. Chatterjee, J.K. Singh, and H. Bapari, Thermal Exfoliation of Natural Cellulosic Material for Graphene Synthesis, J. Mater. Eng. Perform., 2015, 24, p 80–84CrossRefGoogle Scholar
  10. 10.
    P. Penczek, M. Marko, K. Buttle, and J. Frank, Double-Tilt Electron Tomography, Ultramicroscopy, 1995, 60(3), p 393–410CrossRefGoogle Scholar
  11. 11.
    M. Raposo, Q. Ferreira, and P.A. Ribeiro, A Guide for Atomic Force Microscopy Analysis of Soft-Condensed Matter, Mod. Res. Educ. Top. Microsc., 2007, 1, p 758–769Google Scholar
  12. 12.
    S. Gupta, R. Kumar, L. Kefu, B. Moseley, and S. Vassilvitskii, Local Search Methods for k-Means with Outliers, Proc. VLDB Endow., 2017, 10(7), p 757–768CrossRefGoogle Scholar
  13. 13.
    L. Bottou, and Y. Bengio, Convergence Properties of the k-Means Algorithms, Advances in Neural Information Processing Systems, G. Tesauro, D. Touretzky, T. Leed, Eds., MIT Press, Cambridge, MA, 1995, p 585–592Google Scholar
  14. 14.
    A.V. Ovanesova and L.E. Suarez, Applications of Wavelet Transforms to Damage Detection in Frame Structures, Eng. Struct., 2004, 26, p 39–49CrossRefGoogle Scholar
  15. 15.
    S.T. Quek, Q. Wang, L. Zhang, and K.K. Ang, Sensitivity Analysis of Crack Detection in Beams by Wavelet Technique, Int. J. Mech. Sci., 2001, 43, p 2899–2910CrossRefGoogle Scholar
  16. 16.
    K. Gurley and A. Kareem, Applications of Wavelet Transforms in Earthquake, Wind and Ocean Engineering, Eng. Struct., 1999, 21, p 149–167CrossRefGoogle Scholar
  17. 17.
    R.R.L. De Oliveira, D.A.C. Albuquerque, F.L. Leite, F.M. Yamaji, and T.G.S. Cruz, Measurement of the Nanoscale Roughness by Atomic Force Microscopy: Basic Principles and Applications, INTECH Open Access Publisher, London, 2012, p 147–175Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Computer Applications Department, Sikkim Manipal Institute of TechnologySikkim Manipal UniversityRangpoIndia
  2. 2.Center for Materials Science and Nanotechnology, Sikkim Manipal Institute of TechnologySikkim Manipal UniversityRangpoIndia

Personalised recommendations