Bias Voltage-Dependent Impedance Spectroscopy Analysis of Hydrothermally Synthesized ZnS Nanoparticles

  • Arka Dey
  • Joydeep Dhar
  • Sayantan Sil
  • Rajkumar Jana
  • Partha Pratim RayEmail author


In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (Eg = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.


ac conductivity bulk resistance complex impedance spectroscopy hydrothermal nanoparticles 



The authors acknowledge the support of PURSE, FIST program of DST and UPE program of UGC, Government of India.


  1. [1]
    A.P. Alivisatos, Semiconductor Clusters, Nanocryst. Quant. Dots Sci., 1996, 271(5251), p 933–937Google Scholar
  2. [2]
    S.W. Shin, S.G. Lee, J. Lee, C.N. Whang, J.H. Lee, I.H. Choi, T.G. Kim, and J.H. Song, Ion-Beam Nano-Patterning by Using Porous Anodic Alumina as a Mask, Nanotechnology, 2005, 16, p 1392–1395CrossRefGoogle Scholar
  3. [3]
    F. Ansari and M. Salavati-Niasari, Simple Sol-Gel Auto-Combustion Synthesis and Characterization of Lead Hexaferrite by Utilizing Cherry Juice as a Novel Fuel and Green Capping Agent, Adv. Powder Technol., 2016, 27, p 2025–2031CrossRefGoogle Scholar
  4. [4]
    M. Dadkhah, F. Ansari, and M. Salavati-Niasari, Thermal Treatment Synthesis of SnO2 Nanoparticles and Investigation of Its Light Harvesting Application, Appl. Phys. A, 2016, 122(1-9), p 700CrossRefGoogle Scholar
  5. [5]
    M. Ghanbari, F. Ansari, and M. Salavati-Niasari, Simple Synthesis-Controlled Fabrication of Thallium Cadmium Iodide Nanostructures via a Novel Route and Photocatalytic Investigation in Degradation of Toxic Dyes, Inorg. Chim. Acta, 2017, 455, p 88–97CrossRefGoogle Scholar
  6. [6]
    K.N. Shreeknthan, B.V. Rajendra, V.B. Kasturi, and G.K. Shirakumar, Growth and Characterization of Semiconducting Cadmium Selenide Thin Films, Cryst. Res. Technol., 2003, 38(1), p 30–33CrossRefGoogle Scholar
  7. [7]
    P. Nazari, F. Ansari, B.A. Nejand, V. Ahmadi, M. Payandeh, and M. Salavati-Niasari, Physicochemical Interface Engineering of CuI/Cu as Advanced Potential Hole-Transporting Materials/Metal Contact Couples in Hysteresis-Free Ultralow-Cost and Large-Area Perovskite Solar Cells, J. Phys. Chem. C, 2017, 121, p 21935–21944CrossRefGoogle Scholar
  8. [8]
    O. Amiria, N. Mir, F. Ansari, and M. Salavati-Niasari, Design and Fabrication of a High Performance Inorganic Tandem Solar Cell with 11.5% Conversion Efficiency, Electrochim. Acta, 2017, 252, p 315–321CrossRefGoogle Scholar
  9. [9]
    S. Gupta, J.S. Meclure, and V.P. Singh, Phosphor Efficiency and Deposition Temperature in ZnS: Mn A.C. Thin Film Electroluminescence Display Devices, Thin Solid Films, 1997, 299(1–2), p 33–37CrossRefGoogle Scholar
  10. [10]
    R. Saravanann, S. Saravanakumar, and S. Lavanya, Growth and Local Structure Analysis of ZnS Nanoparticles, Phys. B, 2010, 405(17), p 3700–3703CrossRefGoogle Scholar
  11. [11]
    Y.H. Lin, M. Li, C.W. Nan, and J. Li, Grain and Grain Boundary Effects in High-Permittivity Dielectric NiO-Based Ceramics, Appl. Phys. Lett., 2006, 89(3), p 032907CrossRefGoogle Scholar
  12. [12]
    A. Dey, A. Layek, A. Roychowdhury, M. Das, J. Datta, S. Middya, D. Das, and P.P. Ray, Investigation of Charge Transport Properties in Less Defective Nanostructured ZnO Based Schottky Diode, RSC. Adv., 2015, 5, p 36560–36567CrossRefGoogle Scholar
  13. [13]
    Y.V.B. Santana, C.W. Raubach, M.M. Ferrer, F.L. Porta, J.R. Sambrano, V.M. Longo, E.R. Leite, and E. Longo, Experimental and Theoretical Studies on the Enhanced Photoluminescence Activity of Zinc Sulfide with a Capping Agent, J. Appl. Phys., 2011, 110(12), p 123507CrossRefGoogle Scholar
  14. [14]
    A. Dey, S. Middya, R. Jana, M. Das, J. Datta, A. Layek, and P.P. Ray, Light Induced Charge Transport Property Analysis of Nanostructured ZnS Based Schottky Diode, J. Mater. Sci-Mater El., 2016, 27(6), p 6325–6335CrossRefGoogle Scholar
  15. [15]
    F. Davar, M. Mohammadikish, M.R. Loghman-Estarki, and Z. Hamidi, Synthesis of Spherical ZnS Based Nanocrystals Using Thioglycolic Assisted Hydrothermal Method, Cryst. Eng. Commun., 2012, 14, p 7338–7344CrossRefGoogle Scholar
  16. [16]
    P.S. Das, P.K. Chakraborty, B. Behera, N.K. Mohanty, and R.N.P. Choudhary, Impedance Spectroscopy Study of Na2SmV5O15 Ceramics, J. Adv. Ceramics., 2014, 3(1), p 1–6CrossRefGoogle Scholar
  17. [17]
    W.T. Shaw, Complex Analysis with Mathematica, Cambridge University Press, Cambridge, 2006CrossRefGoogle Scholar
  18. [18]
    B. Behera, P. Nayak, and R.N.P. Choudhary, Impedance Spectroscopy Study of NaBa2V5O15 Ceramic, J. Alloys. Compd., 2007, 436(1–2), p 226–232CrossRefGoogle Scholar
  19. [19]
    S. Saha, S. Chanda, A. Dutta, and T.P. Sinha, Dielectric Relaxation and Phonon Modes of NdCrO3 Nanostructure, J. Sol–Gel. Sci. Techn., 2014, 69(3), p 553–563CrossRefGoogle Scholar
  20. [20]
    G.E. Pike and C.H. Seager, The dc Voltage Dependence of Semiconductor Grain-Boundary Resistance, J. Appl. Phys, 1979, 50, p 3414–3422CrossRefGoogle Scholar
  21. [21]
    T. Prakash and S. Ramasamy, Effect of Applied Bias Voltage on Grain Boundary Potential Barrier Height (Φb) in Semiconductor Nanocrystals, Electron. Mater. Lett., 2013, 9(2), p 227–230CrossRefGoogle Scholar
  22. [22]
    S.K. Barik, R.N.P. Choudhary, and P.K. Mahapatra, Impedance Spectroscopy Study of Na1/2Sm1/2TiO3 Ceramic, Appl. Phys. A, 2007, 88, p 217–222CrossRefGoogle Scholar
  23. [23]
    A.P. Sakhya, A. Dutta, and T.P. Sinha, Dielectric and Impedance Spectroscopic Studies of Neodymium Gallate, Phys. B: Condens. Matter., 2016, 488, p 1–7CrossRefGoogle Scholar
  24. [24]
    K. Funke, Jump Relaxation Model and Coupling Model—A Comparison, J. Non-Cryst. Solids., 1994, 172–174(2), p 1215–1221CrossRefGoogle Scholar
  25. [25]
    S. Saha, S. Chanda, A. Dutta, and T.P. Sinha, Dielectric Relaxation of NdMnO3 Nanoparticles, Mater. Res. Bull., 2013, 48(11), p 4917–4923CrossRefGoogle Scholar
  26. [26]
    M. Ahmad, M.A. Rafiq, Z. Imran, K. Rasool, R.N. Shahid, Y. Javed, and M.M. Hasan, Charge Conduction and Relaxation in MoS2 Nanoflakes Synthesized by Simple Solid State Reaction, J. Appl. Phys., 2013, 114(4), p 043710CrossRefGoogle Scholar
  27. [27]
    P.S. Anantha and K. Hariharan, Ac Conductivity Analysis and Dielectric Relaxation Behaviour of NaNO3–Al2O3 Composites, Mater. Sci. Eng: B., 2005, 121(1–2), p 12–19CrossRefGoogle Scholar
  28. [28]
    A.K. Jonscher, Relaxation in Low-Loss Dielectrics, Universal Relaxation Law, Chelsea Dielectrics Press, London, 1996, p 259–268Google Scholar
  29. [29]
    S. Saha, S. Chanda, A. Dutta, and T.P. Sinha, Dielectric Relaxation of PrFeO3 Nanoparticles, Solid State Sci., 2016, 58, p 55–63CrossRefGoogle Scholar
  30. [30]
    H.M. Chenari, A. Hassanzadeh, M.M. Golzan, H. Sedghi, and M. Talebian, Frequency Dependence of Ultrahigh Dielectric Constant of Novel Synthesized SnO2 Nanoparticles Thick Films, Current Applied Physics., 2011, 11(3), p 409–413CrossRefGoogle Scholar
  31. [31]
    N. Kumar, E.A. Patterson, T. Frömling, and D.P. Cann, DC-Bias Dependent Impedance Spectroscopy of BaTiO3–Bi(Zn1/2Ti1/2)O3 Ceramics, J. Mater. Chem. C, 2016, 4(9), p 1782–1786CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Department of PhysicsJadavpur UniversityKolkataIndia

Personalised recommendations