Analyses of Small Punch Creep Deformation Behavior of 316LN Stainless Steel Having Different Nitrogen Contents

  • J. Ganesh Kumar
  • K. Laha
  • V. Ganesan
  • G. V. Prasad Reddy


The small punch creep (SPC) behavior of 316LN stainless steel (SS) containing 0.07, 0.11 and 0.14 wt.% nitrogen has been investigated at 923 K. The transient and tertiary SPC deformation of 316LN SS with various nitrogen contents have been analyzed according to the equation proposed for SPC deflection, \(\delta = \delta_{0} + \delta_{\text{T}} (1 - e^{ - \kappa t} ) + \dot{\delta }_{\text{s}} t + \delta_{3} e^{{\left[ {\varphi \left( {t - t_{\text{r}} } \right)} \right]}}\). The relationships among the rate of exhaustion of transient creep (κ), steady-state deflection rate (\(\dot{\delta }_{\text{s}}\)) and the rate of acceleration of tertiary creep (φ) revealed the interrelationships among the three stages of SPC curve. The first-order reaction rate theory was found to be applicable to SPC deformation throughout the transient as well as tertiary region, in all the investigated steels. The initial and final creep deflection rates were decreased, whereas time to attain steady-state deflection rate increased with the increase in nitrogen content. By increasing the nitrogen content in 316LN SS from 0.07 to 0.14 wt.%, each stage of SPC was prolonged, and consequently, the values of κ, \(\dot{\delta }_{\text{s}}\) and φ were lowered. Using the above parameters, the master curves for both transient and tertiary SPC deflections were constructed for 316LN SS containing different nitrogen contents.


316LN SS nitrogen effect small punch creep tertiary transient 



The authors would like to express their deep sense of gratitude to Dr. M.D. Mathew, former head, Mechanical Metallurgy division, for initiating this research work. The support received from Dr. G. Amarendra, Scientist-in-charge, UGC-DAE-CSR Kalpakkam Node, is gratefully acknowledged. The authors sincerely thank the technical support received from Dr. S. Ravi and Mrs. J. Vanaja, Mechanical Metallurgy Division.


  1. 1.
    M.P. Manahan, A.S. Argon, and O.K. Harling, The Development of a Miniaturized Disk Bend Test for the Determination of Postirradiation Mechanical Properties, J. Nucl. Mater., 1981, 103, p 1545–1550CrossRefGoogle Scholar
  2. 2.
    J.M. Baik, J. Kameda, and O. Buck, Small Punch Test Evaluation of Intergranular Embrittlement of an Alloy Steel, Scr. Metall., 1983, 17, p 1443–1447CrossRefGoogle Scholar
  3. 3.
    G.E. Lucas, The Development of Small Specimen Mechanical Test Techniques, J. Nucl. Mater., 1983, 117, p 327–339CrossRefGoogle Scholar
  4. 4.
    X. Mao and H. Takahashi, Development of a Further Miniaturized Specimen of 3 mm Diameter for TEM Disk (Φ 3 mm) Small Punch Tests, J. Nucl. Mater., 1987, 150, p 42–52CrossRefGoogle Scholar
  5. 5.
    J.D. Parker, G.C. Stratford, N. Shaw, G. Spink, and H. Metcalfe, The Application of Miniature Disc Testing for the Assessment of Creep Damage in CrMoV Rotor Steel’, in: S. Hietanen, P. Auerkari (eds.) BALTICA IV Plant Maintenance and Managing Life & Performance, Vol. 2, Helsinki, 1998Google Scholar
  6. 6.
    S. Tettamanti and R. Crudeli, Small punch creep test, ‘Small punch creep test A promising methodology for high temperature plant components life evaluation’, in: S. Hietanen, P. Auerkari (eds.) BALTICA IV Plant Maintenance and Managing Life & Performance, Vol. 2, Helsinki, 1998Google Scholar
  7. 7.
    B. Ule, T. Sustar, F. Dobes, K. Milicka, V. Bicego, S. Tettamanti, K. Maile, C. Schwarzkopf, M.P. Whelan, R.H. Kozlowski, and J. Klaput, Small Punch Test Method Assessment for the Determination of the Residual Creep Life of Service Exposed Components: Outcomes from an Interlaboratory Exercise, Nucl. Eng. Des., 1999, 192, p 1–11CrossRefGoogle Scholar
  8. 8.
    S. Komazaki, T. Hashida, T. Shoji, and K. Suzuki, Development of Small Punch Tests for Creep Property Measurement of Tungsten Alloyed 9% Cr Ferritic Steels, J. Test. Eval., 2000, 28, p 249–256CrossRefGoogle Scholar
  9. 9.
    F. Dobes and K. Milicka, On the Monkman–Grant Relation for Small Punch Test Data, Mater. Sci. Eng. A, 2002, 336, p 245–248CrossRefGoogle Scholar
  10. 10.
    S. Komazaki, T. Sugimoto, Y. Hasegawa, and Y. Kohno, Damage Evaluation of a Welded Joint in a Long Term Service Exposed Boiler by Using a Small Punch Creep Test, ISIJ Int., 2007, 47, p 1228–1233CrossRefGoogle Scholar
  11. 11.
    T. Izaki, T. Kobayashi, J. Kusumoto, and A. Kanaya, A Creep Life Assessment Method for Boiler Pipes Using Small Punch Creep Test, Int. J. Press. Vessels Pip., 2009, 86, p 637–642CrossRefGoogle Scholar
  12. 12.
    B. Gulcimen and P. Hahner, Determination of Creep Properties of a P91 Weldment by Small Punch Testing and a New Evaluation Approach, Mater. Sci. Eng. A, 2013, 588, p 125–131CrossRefGoogle Scholar
  13. 13.
    Z. Li and R. Sturm, Small Punch Test for Weld Heat Affected Zones, Mater. High Temp., 2006, 23, p 225–232CrossRefGoogle Scholar
  14. 14.
    B.J. Kim, Y.B. Sim, J.H. Lee, M.K. Kim, and B.S. Lim, Application of Small Punch Creep Test for Inconel 617 Alloy Weldment, Eng. Proc., 2011, 10, p 2579–2584CrossRefGoogle Scholar
  15. 15.
    G.A. Webster, A.P.D. Cox, and J.E. Dorn, A Relationship Between Transient and Steady State Creep at Elevated Temperatures, Met. Sci. J., 1969, 3, p 221–225CrossRefGoogle Scholar
  16. 16.
    F. Garofalo, Fundamentals of Creep and Creep Rupture in Metals, MacMilan, New York, 1965Google Scholar
  17. 17.
    W.J. Evans and B. Wilshire, The High Temperature Creep and Fracture Behavior of 70-30 Alpha Brass, Metall. Trans., 1970, 1, p 2133–2139CrossRefGoogle Scholar
  18. 18.
    F. Dobes and J. Cadek, Contribution to the Analysis of Time Dependences of Creep, Kov. Mater., 1981, 19, p 31–40Google Scholar
  19. 19.
    F. Dobes and K. Milicka, Application of Small Punch Creep Testing in Assessment of Creep Life Time, Mater. Sci. Eng. A, 2009, 510, p 440–443CrossRefGoogle Scholar
  20. 20.
    F. Dobes, K. Milicka, and P. Kratochvil, Small Punch Creep in Fe28Al3Cr0.02Ce Alloy, Intermetallics, 2004, 12, p 1397–1401CrossRefGoogle Scholar
  21. 21.
    F. Hou, H. Xu, Y. Wang, and L. Zhang, Determination of Creep Property of 1.25Cr0.5Mo Pearlitic Steels by Small Punch Test, Eng. Fail. Anal., 2013, 28, p 215–221CrossRefGoogle Scholar
  22. 22.
    J. Ganesh Kumar, V. Ganesan, and K. Laha, Analyses of Transient and Tertiary Small Punch Creep Deformation of 316LN Stainless Steel, Metall. Mater. Trans. A, 2016, 47, p 4484–4493CrossRefGoogle Scholar
  23. 23.
    M.D. Mathew, K. Laha, and V. Ganesan, Improving Creep Strength of 316L Stainless Steel by Alloying with Nitrogen, Mater. Sci. Eng. A, 2012, 535, p 76–83CrossRefGoogle Scholar
  24. 24.
    J. Ganesh Kumar, M. Chowdary, V. Ganesan, M.D. Mathew, R.K. Paretkar, and K. Bhanu Sankara Rao, High Temperature Design Curves for High Nitrogen Grades of 316LN Stainless Steel, Nucl. Eng. Des., 2010, 240, p 1363–1370CrossRefGoogle Scholar
  25. 25.
    M.D. Mathew, J. Ganesh Kumar, V. Ganesan, and K. Laha, Small Punch Creep Studies for Optimization of Nitrogen Content in 316LN SS for Enhanced Creep Resistance, Metall. Mater. Trans., 2014, 45A, p 731–737CrossRefGoogle Scholar
  26. 26.
    A.F. Padilha, D.M. Escriba, E. Materna Morris, M. Rieth, and M. Klimenkov, Precipitation in AISI, 316L(N) During Creep Tests at 550 and 600°C Up To 10 Years, J. Nucl. Mater., 2007, 362, p 132–138CrossRefGoogle Scholar
  27. 27.
    J.W. Simmons, Influence of Nitride (Cr2N) Precipitation on the Plastic Flow Behavior of High Nitrogen Austenitic Stainless Steel, Scr. Metall. Mater., 1995, 32, p 265–270CrossRefGoogle Scholar
  28. 28.
    M.O. Speidel, Properties and Applications of High Nitrogen Steels: Austenites and Duplex, in: J. Foct, A. Henry (eds.) Proceedings International Conference on High nitrogen steels, HNS 88, France. The Institute of metals, London, 1989, p 92Google Scholar
  29. 29.
    W.J. Evans and B. Wilshire, Transient and Steady State Creep Behavior of Nickel, Zinc and Iron, Trans. Met. Soc. AIME, 1968, 242, p 1303–1307Google Scholar
  30. 30.
    C. Phaniraj, M. Nandagopal, S.L. Mannan, and P. Rodriguez, The Relationship Between Transient and Steady State Creep in AISI, 304 Stainless Steel, Acta Metall. Mater., 1991, 39, p 1651–1656CrossRefGoogle Scholar
  31. 31.
    C. Phaniraj, M. Nandagopal, S.L. Mannan, P. Rodriguez, and B.P. Kashyap, Analysis of First Order Kinetics for Tertiary Creep in AISI, 304 Stainless Steel, Acta Mater., 1996, 44, p 4059–4069CrossRefGoogle Scholar
  32. 32.
    B.K. Choudhary, C. Phaniraj, K. Bhanu Sankara Rao, and S.L. Mannan, Creep Deformation Behaviour and Kinetic Aspects of 9Cr-1Mo Ferritic Steel, ISIJ Int., 2001, 41, p S73–S80CrossRefGoogle Scholar
  33. 33.
    J. Vanaja and K. Laha, Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic Martensitic Steel, Metall. Mater. Trans. A, 2015, 46, p 4669–4679CrossRefGoogle Scholar
  34. 34.
    R.E. Schramm and R.P. Reed, Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels, Met. Trans., 1975, 6A, p 1345CrossRefGoogle Scholar
  35. 35.
    V. Ganesan, M.D. Mathew, P. Parameswaran, and K. Bhanu Sankara Rao, Creep Strengthening of Low Carbon Grade Type 316LN Stainless Steel by Nitrogen, Trans. Indian Inst. Met., 2010, 63, p 417–421CrossRefGoogle Scholar
  36. 36.
    D. Sidey and B. Wilshire, Mechanism of Creep and Recovery in Nimonic 80A, Met. Sci. J., 1969, 3, p 56CrossRefGoogle Scholar
  37. 37.
    V. Ganesan, K. Laha, M. Nandagopal, P. Parameswaran, and M.D. Mathew, Effect of Nitrogen Content on Dynamic Strain Ageing Behaviour of Type 316LN Austenitic Stainless Steel During Tensile Deformation, Mater. High Temp., 2014, 31, p 162–170CrossRefGoogle Scholar
  38. 38.
    G. Sasikala, M.D. Mathew, K. Bhanu Sankara Rao, and S.L. Mannan, Creep Deformation and Fracture Behaviour of a Nitrogen Bearing Type 316 Stainless Steel Weld Metal, J. Nucl. Mater., 1999, 273, p 257–264CrossRefGoogle Scholar
  39. 39.
    M. Nandagopal, V. Ganesan, and K. Laha, Effect of Nitrogen on Primary and Steady State Creep Deformation Behaviour of 316LN Austenitic Stainless Steel, Trans. Indian Inst. Met., 2017, 70, p 783–790CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • J. Ganesh Kumar
    • 1
  • K. Laha
    • 1
  • V. Ganesan
    • 1
  • G. V. Prasad Reddy
    • 1
  1. 1.Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations