Skip to main content

Investigation of Mixed-Type Craters and the Role of Bifluoride Additives to Produce Zirconia-Toughened Alumina-Based PEO Coating

Abstract

Al2O3-ZrO2 composite ceramic coatings were prepared on Al6061 aluminum alloy by plasma electrolytic oxidation in Na3PO4-K2ZrF6-Na2SiF6-based alkaline electrolyte. Optimum processing time for the coating formation was found to be ~ 50 min. Cross section and surface morphology of the coatings were analyzed using scanning electron microscope. From the phase and elemental composition analysis, the presence of m-ZrO2 and t-ZrO2 phases was confirmed. It was further observed that the peak intensities of t-ZrO2 and α-Al2O3 phases increased with processing time, which was attributed to the enhanced crystallinity caused by the efficient sintering conditions. Corrosion properties were investigated by potentiodynamic polarization test in 3.5 wt.% NaCl solution. The results showed high improvement in corrosion rate with minimum recorded value ~ 0.25 mmy (mm/year) and corrosion current ~ 0.15 × 10−6 A/cm2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Y. Shin, Y. Rhee, and S. Kang, Experimental Evaluation of Toughening Mechanism in Alumina-Zirconia Composites, J. Am. Ceram. Soc., 1999, 82(5), p 1229

    Article  Google Scholar 

  2. 2.

    B. Kerkwijk, L. Winnubst, E.J. Mulder, and H. Verweij, Processing of Homogeneous Zirconia-Toughened Alumina Ceramics with High Dry-Sliding Wear Resistance, J. Am. Ceram. Soc., 1999, 82(8), p 2087

    Article  Google Scholar 

  3. 3.

    J. Wang and R. Stevens, Review Zirconia-Toughened Alumina (ZTA) Ceramics, J. Mater. Sci., 1989, 24(10), p 3421

    Article  Google Scholar 

  4. 4.

    S. Olhero, I. Ganesh, P. Torres, F. Alves, and J.M.F. Ferreira, Aqueous Colloidal Processing of ZTA Composites, J. Am. Ceram. Soc., 2009, 92(1), p 916

    Article  Google Scholar 

  5. 5.

    A.H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, and R. Torrecillas, Slow-Crack-Growth Behavior of Zirconia-Toughened Alumina Ceramics Processed by Different Methods, J. Am. Ceram. Soc., 2003, 86(1), p 115

    Article  Google Scholar 

  6. 6.

    Z. Ur Rehman, B.-H. Ahn, Y.S. Jeong, J.-I. Song, and B.-H. Koo, The Influence of Various Additives on the Properties of PEO Coatings Formed on AZ31 Mg Alloy, Surf. Rev. Lett., 2016, 23(03), p 1650006

    Article  Google Scholar 

  7. 7.

    C.S. Dunleavy, J.A. Curran, and T.W. Clyne, Time Dependent Statistics of Plasma Discharge Parameters During Bulk AC Plasma Electrolytic Oxidation of Aluminium, Appl. Surf. Sci., 2013, 268, p 397

    Article  Google Scholar 

  8. 8.

    S. Aliasghari, P. Skeldon, and G.E. Thompson, Plasma Electrolytic Oxidation of Titanium in a Phosphate/Silicate Electrolyte and Tribological Performance of the Coatings, Appl. Surf. Sci., 2014, 316, p 463

    Article  Google Scholar 

  9. 9.

    Z. Zhang, B. Gu, W. Zhang, G. Kan, and J. Sun, The Enhanced Characteristics of Osteoblast Adhesion to Porous Zinc-TiO2 Coating Prepared by Plasma Electrolytic Oxidation, Appl. Surf. Sci., 2012, 258(17), p 6504

    Article  Google Scholar 

  10. 10.

    A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, Plasma Electrolysis for Surface Engineering, Surf. Coat. Technol., 1999, 122(2–3), p 73

    Article  Google Scholar 

  11. 11.

    Z. Wu, Z. Yao, and Z. Jiang, Preparation and Structure of Microarc Oxidation Ceramic Coatings Containing ZrO2 Grown on LY12 Al Alloy, Rare Met., 2008, 27(1), p 55

    Article  Google Scholar 

  12. 12.

    Z. Wu, Z. Jiang, Z. Yao, and X. Zhang, Influence of Treatment Time on Structure and Property of Ceramic Coatings Formed on LY12 Aluminum Alloy by Micro-arc Oxidation, J. Inorg. Mater., 2007, 22, p 555

    Google Scholar 

  13. 13.

    E. Matykina, R. Arrabal, P. Skeldon, and G.E. Thompson, Incorporation of Zirconia Nanoparticles into Coatings Formed on Aluminium by AC Plasma Electrolytic Oxidation, J. Appl. Electrochem., 2008, 38(10), p 1357

    Article  Google Scholar 

  14. 14.

    E. Matykina, R. Arrabal, F. Monfort, P. Skeldon, and G.E. Thompson, Incorporation of Zirconia into Coatings Formed by DC Plasma Electrolytic Oxidation of Aluminium in Nanoparticle Suspensions, Appl. Surf. Sci., 2008, 255(5), p 2830

    Article  Google Scholar 

  15. 15.

    Z. Ur Rehman, S.H. Shin, M. Kaseem, M. Uzair, and B.H. Koo, Towards a Compact Coating Formed on Al6061 Alloy in Phosphate Based Electrolyte via Two-Step PEO Process and K2ZrF6 Additives, Surf. Coat. Technol., 2017, 328, p 355

    Article  Google Scholar 

  16. 16.

    X.M. Zhang, D.F. Chen, X.Z. Gong, S.Q. Yang, and X.B. Tian, Modulation Effects of K2ZrF6 Additive on Microstructure and Heat Resistance of Micro-arc Oxide Coatings Fabricated on LY12 Aluminum Alloy, J. Inorg. Mater., 2010, 25, p 865

    Article  Google Scholar 

  17. 17.

    H.W. Yang, Y.S. Kim, J.H. Park, G.W. Kim, Y.G. Ko, and D.H. Shin, Effect of Na2WO4 in Electrolyte on Mechanical Properties of Oxide Layer on Al Alloy via Plasma Electrolytic Oxidation, Korean J. Met. Mater., 2015, 53, p 535

    Article  Google Scholar 

  18. 18.

    K.R. Shin, Y.G. Ko, and D.H. Shin, Effect of Electrolyte on Surface Properties of Pure Titanium Coated by Plasma Electrolytic Oxidation, J. Alloys Compd., 2011, 509, p S478

    Article  Google Scholar 

  19. 19.

    R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, and G.E. Thompson, Characterization of AC PEO Coatings on Magnesium Alloys, Surf. Coat. Technol., 2009, 203(16), p 2207

    Article  Google Scholar 

  20. 20.

    W. Paul and C.P. Sharma, Nanoceramic Matrices, Biomedical Applications, Am. J. Biochem. Biotechnol., 2006, 2(2), p 41

    Article  Google Scholar 

  21. 21.

    M. Tang, L. Weiping, L. Huicong, Z. Liqun, T. Mingqi, L. Weiping, L. Huicong, and Z. Liqun, Preparation Al2O3/ZrO2 Composite Coating in an Alkaline Phosphate Electrolyte Containing K2ZrF6 on Aluminum Alloy by Microarc Oxidation, Appl. Surf. Sci., 2012, 258(15), p 5869

    Article  Google Scholar 

  22. 22.

    A.L. Yerokhin, A. Leyland, and A. Matthews, Kinetic Aspects of Aluminium Titanate Layer Formation on Titanium Alloys by Plasma Electrolytic Oxidation, Appl. Surf. Sci., 2002, 200(1–4), p 172

    Article  Google Scholar 

  23. 23.

    M. Tanga, W. Li, H. Liu, and L. Zhu, Preparation Al2O3/ZrO2 Composite Coating in an Alkaline Phosphate Electrolyte Containing K2ZrF6 on Aluminum Alloy by Microarc Oxidation, Appl. Surf. Sci., 2012, 258(15), p 58–69

    Google Scholar 

  24. 24.

    C. Ekberg, G. Kallvenius, Y. Albinsson, and P.L. Brown, Studies on the Hydrolytic Behavior of Zirconium(IV), J. Solut. Chem., 2004, 33(1), p 47

    Article  Google Scholar 

  25. 25.

    Y. Yan and Y. Han, Formation of Al2O3-ZrO2 Composite Coating on Zirconium by Micro-arc Oxidation, Scr. Mater., 2008, 59(2), p 203

    Article  Google Scholar 

  26. 26.

    R. Mcpherson, Formation of Metastable Phases in Flame- and Plasma-Prepared Alumina, J. Mater. Sci., 1973, 8(6), p 851

    Article  Google Scholar 

  27. 27.

    M. Kaseem, M.P. Kamil, J.H. Kwon, and Y.G. Ko, Effect of Sodium Benzoate on Corrosion Behavior of 6061 Al Alloy Processed by Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2015, 283, p 268

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2011-0030058).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zeeshan Ur Rehman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ur Rehman, Z., Shin, S.H., Ahmad, T. et al. Investigation of Mixed-Type Craters and the Role of Bifluoride Additives to Produce Zirconia-Toughened Alumina-Based PEO Coating. J. of Materi Eng and Perform 27, 2430–2437 (2018). https://doi.org/10.1007/s11665-018-3338-2

Download citation

Keywords

  • corrosion
  • K2ZrF6
  • microstruture
  • PEO
  • zirconia-toughened alumina