Effects of Multiple Rejuvenation Cycles on Mechanical Properties and Microstructure of IN-738 Superalloy

  • Cosimo Monti
  • Alessandro Giorgetti
  • Leonardo Tognarelli
  • Francesco Mastromatteo
Article
  • 9 Downloads

Abstract

The scope of this work is to show the effects of multiple applications of a rejuvenation treatment studied for IN-738 on both the microstructure and the mechanical properties of the creep-damaged superalloy and to check the recovery obtained after one and two rejuvenation cycles through creep and tensile tests, whose results will be compared with the performance of the virgin material. This work will show that this rejuvenation treatment is able to recover the microstructure of creep-damaged specimens after one and two applications and that the mechanical properties of the rejuvenated alloy are very similar to the virgin material even after two rejuvenation cycles.

Keywords

creep IN-738 microstructure rejuvenation tensile 

References

  1. 1.
    M.J. Donachie and S.J. Donachie, Superalloys: a Technical Guide, 2nd ed., ASM International, Materials Park, 2002Google Scholar
  2. 2.
    G.C. Bieber, R.J. Mihalisin, in Structural Studies and Properties of a New Cast High Strength Corrosion Resistant Superalloy, Strength Met. Alloys, Proceedings International Conference, 2nd, ASM, 1970, III, pp. 1031–1036.Google Scholar
  3. 3.
    Alloy IN-738 Technical data, INCO, New York, 1981.Google Scholar
  4. 4.
    C. Monti, A. Giorgetti, L. Tognarelli, and F. Mastromatteo, On the Effects of the Rejuvenation Treatment on Mechanical and Microstructural Properties of IN-738 Superalloy, J. Mater. Eng. Perform., 2017, 26(5), p 2244–2256CrossRefGoogle Scholar
  5. 5.
    S.S. Hosseini, S. Nategh, and A. Ekrami, Microstructural Evolution in Damaged IN738LC Alloy During Various Steps of Rejuvenation Heat Treatments, J. Alloys Compd., 2002, 512, p 340–350CrossRefGoogle Scholar
  6. 6.
    E. Balikci and A. Raman, Characteristics of the γ′ Precipitates at High Temperatures in Ni-Base Polycrystalline Superalloy IN738LC, J. Mater. Sci., 2000, 35, p 3593–3597CrossRefGoogle Scholar
  7. 7.
    E. Balikci, A. Raman, and R.A. Mirshams, Influence of Various Heat Treatments on the Microstructure of Polycrystalline IN738LC, Metall. Mater. Trans. A, 1997, 28A(10), p 1993–2003CrossRefGoogle Scholar
  8. 8.
    P. Wangyao, V. Krongtong, W. Homkrajai, S. Polsilapa, and G. Lothongkum, Comparing Rejuvenated Microstructures After HIP Process and Different heat Treatments in Cast Nickel Base Superalloys, IN-738 AND GTD-111 After Long-Term Service, Acta Metallurgica Slovaca, 2006, 12, p 23–32Google Scholar
  9. 9.
    Z. Mazur, A. Luna-Ramírez, J.A. Juárez-Islas, and A. Campos-Amezcua, Failure Analysis of a Gas Turbine Blade Made of Inconel 738LC Alloy, Eng. Failure Anal., 2005, 12(3), p 474–486CrossRefGoogle Scholar
  10. 10.
    A.K. Koul, J-P. Immarigeon, R. Castillo, P. Lowden, J. Liburdi, Rejuvenation of Service-Exposed in 738 Turbine Blades, Superalloys, 1988, p 755–764Google Scholar
  11. 11.
    S. Polsilapa, P. Sopon, N. Panich, N. Chuankrerkkul, and A. Thueploy, Reheat Treated Microstructures and Gamma Prime Particle Coarsening Behaviour at 900 °C of Cast Nickel Based Superalloy IN-738, J. Metal. Mater. Miner., 2006, 16(2), p 7–13Google Scholar
  12. 12.
    A. Giorgetti, C. Monti, L. Tognarelli, and F. Mastromatteo, Microstructural Evolution of René N4 During High Temperature Creep and Aging, Results Phys., 2017, 7, p 1608–1615CrossRefGoogle Scholar
  13. 13.
    K.C. Antony, G.W. Goward, Aircraft Gas Turbine Blade and Vane Repair, Superalloys, 1988, p 745–754Google Scholar
  14. 14.
    D. Liu, J.C. Lippold, J. Li, S.R. Rohklin, J. Vollbrecht, and R. Grylls, Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components, Metall. Mater. Trans. A, 2014, 45(10), p 4454–4469CrossRefGoogle Scholar
  15. 15.
    O. Yilmaz, N. Gindy, and J. Gao, A Repair and Overhaul Methodology for Aeroengine Components, Robot. Comput. Integr. Manuf., 2010, 26(2), p 190–201CrossRefGoogle Scholar
  16. 16.
    S. Mokadem, C. Bezençon, A. Hauert, A. Jacot, and W. Kurz, Laser Repair of Superalloy Single Crystals with Varying Substrate Orientations, Metall. Mater. Trans. A, 2007, 38(7), p 1500–1510CrossRefGoogle Scholar
  17. 17.
    M. Okazaki, I. Ohtera, and Y. Harada, Damage Repair in CMSX-4 Alloy Without Fatigue Life Reduction Penalty, Metall. Mater. Trans. A, 2004, 35(2), p 535–542CrossRefGoogle Scholar
  18. 18.
    M. Brandt, S. Sun, N. Alam, P. Bendeich, and A. Bishop, Laser Cladding Repair of Turbine Blades in Power Plants: from Research to Commercialization, Int. Heat Treat. Surf. Eng., 2009, 3(3), p 105–114CrossRefGoogle Scholar
  19. 19.
    C.Y. Su, C.P. Chou, B.C. Wu, and W.C. Lih, Plasma Transferred Arc Repair Welding of the Nickel-Base Superalloy IN-738LC, J. Mater. Eng. Perform., 1997, 6(5), p 619–627CrossRefGoogle Scholar
  20. 20.
    J. Durocher and N.L. Richards, Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys, J. Mater. Eng. Perform., 2011, 20(7), p 1294–1303CrossRefGoogle Scholar
  21. 21.
    S. Vezzù, S. Rech, E. Vedelago, G.P. Zanon, G. Alfeo, A. Scialpi, and R. Huang, On Deposition of Waspaloy Coatings by Cold Spray, Surf. Eng., 2014, 30(5), p 342–351CrossRefGoogle Scholar
  22. 22.
    S. Vezzù, C. Cavallini, S. Rech, E. Vedelago, and A. Giorgetti, Development of High Strength, High Thermal Conductivity Cold Sprayed Coatings to Improve Thermal Management in Hybrid Motorcycles, SAE Int. J. Mater. Manf., 2015, 8(1), p 180–186CrossRefGoogle Scholar
  23. 23.
    S.R. Bell, Repair and Rejuvenation Procedures for Aero Gas-Turbine Hot-Section Components, Mater. Sci. Technol., 1985, 1(8), p 629–634CrossRefGoogle Scholar
  24. 24.
    P. Wangyao, W. Homkrajai, V. Krongtong, N. Panich, and G. Lothongkum, OM Study of Effect of HIP and Heat Treatments on Microstructural Restoration in Cast Nickel Based Superalloy, IN-738, J. Met. Mater. Miner., 2007, 17(2), p 51–56Google Scholar
  25. 25.
    A.K. Koul and R. Castillo, Assessment of Service Induced Microstructural Damage and its Rejuvenation in Turbine Blades, Metall. Mater. Trans. A, 1988, 19(8), p 2049–2066CrossRefGoogle Scholar
  26. 26.
    E. Lvova and D. Norsworthy, Influence of Service-Induced Microstructural Changes on the Aging Kinetics of Rejuvenated Ni-Based Superalloy Gas Turbine Blades, J. Mater. Eng. Perform., 2001, 10(3), p 299–312CrossRefGoogle Scholar
  27. 27.
    E. Lvova, A Comparison of Aging Kinetics of New and Rejuvenated Conventionally Cast GTD-111 Gas Turbine Blades, J. Mater. Eng. Perform., 2007, 16(2), p 254–264CrossRefGoogle Scholar
  28. 28.
    S. Holmström and P. Auerkari, Robust Prediction of Full Creep Curves from Minimal Data and Time to Rupture Model, Energy Mater. Mater. Sci. Eng. Energy Syst., 2006, 1(4), p 249–255CrossRefGoogle Scholar
  29. 29.

Copyright information

© ASM International 2018

Authors and Affiliations

  • Cosimo Monti
    • 1
  • Alessandro Giorgetti
    • 1
  • Leonardo Tognarelli
    • 2
  • Francesco Mastromatteo
    • 2
  1. 1.Department of Innovation and Information EngineeringGuglielmo Marconi UniversityRomeItaly
  2. 2.BHGE (TPS) – Nuovo Pignone Tecnologie SRLFlorenceItaly

Personalised recommendations