Skip to main content
Log in

Effects of Multiple Rejuvenation Cycles on Mechanical Properties and Microstructure of IN-738 Superalloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The scope of this work is to show the effects of multiple applications of a rejuvenation treatment studied for IN-738 on both the microstructure and the mechanical properties of the creep-damaged superalloy and to check the recovery obtained after one and two rejuvenation cycles through creep and tensile tests, whose results will be compared with the performance of the virgin material. This work will show that this rejuvenation treatment is able to recover the microstructure of creep-damaged specimens after one and two applications and that the mechanical properties of the rejuvenated alloy are very similar to the virgin material even after two rejuvenation cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M.J. Donachie and S.J. Donachie, Superalloys: a Technical Guide, 2nd ed., ASM International, Materials Park, 2002

    Google Scholar 

  2. G.C. Bieber, R.J. Mihalisin, in Structural Studies and Properties of a New Cast High Strength Corrosion Resistant Superalloy, Strength Met. Alloys, Proceedings International Conference, 2nd, ASM, 1970, III, pp. 1031–1036.

  3. Alloy IN-738 Technical data, INCO, New York, 1981.

  4. C. Monti, A. Giorgetti, L. Tognarelli, and F. Mastromatteo, On the Effects of the Rejuvenation Treatment on Mechanical and Microstructural Properties of IN-738 Superalloy, J. Mater. Eng. Perform., 2017, 26(5), p 2244–2256

    Article  Google Scholar 

  5. S.S. Hosseini, S. Nategh, and A. Ekrami, Microstructural Evolution in Damaged IN738LC Alloy During Various Steps of Rejuvenation Heat Treatments, J. Alloys Compd., 2002, 512, p 340–350

    Article  Google Scholar 

  6. E. Balikci and A. Raman, Characteristics of the γ′ Precipitates at High Temperatures in Ni-Base Polycrystalline Superalloy IN738LC, J. Mater. Sci., 2000, 35, p 3593–3597

    Article  Google Scholar 

  7. E. Balikci, A. Raman, and R.A. Mirshams, Influence of Various Heat Treatments on the Microstructure of Polycrystalline IN738LC, Metall. Mater. Trans. A, 1997, 28A(10), p 1993–2003

    Article  Google Scholar 

  8. P. Wangyao, V. Krongtong, W. Homkrajai, S. Polsilapa, and G. Lothongkum, Comparing Rejuvenated Microstructures After HIP Process and Different heat Treatments in Cast Nickel Base Superalloys, IN-738 AND GTD-111 After Long-Term Service, Acta Metallurgica Slovaca, 2006, 12, p 23–32

    Google Scholar 

  9. Z. Mazur, A. Luna-Ramírez, J.A. Juárez-Islas, and A. Campos-Amezcua, Failure Analysis of a Gas Turbine Blade Made of Inconel 738LC Alloy, Eng. Failure Anal., 2005, 12(3), p 474–486

    Article  Google Scholar 

  10. A.K. Koul, J-P. Immarigeon, R. Castillo, P. Lowden, J. Liburdi, Rejuvenation of Service-Exposed in 738 Turbine Blades, Superalloys, 1988, p 755–764

  11. S. Polsilapa, P. Sopon, N. Panich, N. Chuankrerkkul, and A. Thueploy, Reheat Treated Microstructures and Gamma Prime Particle Coarsening Behaviour at 900 °C of Cast Nickel Based Superalloy IN-738, J. Metal. Mater. Miner., 2006, 16(2), p 7–13

    Google Scholar 

  12. A. Giorgetti, C. Monti, L. Tognarelli, and F. Mastromatteo, Microstructural Evolution of René N4 During High Temperature Creep and Aging, Results Phys., 2017, 7, p 1608–1615

    Article  Google Scholar 

  13. K.C. Antony, G.W. Goward, Aircraft Gas Turbine Blade and Vane Repair, Superalloys, 1988, p 745–754

  14. D. Liu, J.C. Lippold, J. Li, S.R. Rohklin, J. Vollbrecht, and R. Grylls, Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components, Metall. Mater. Trans. A, 2014, 45(10), p 4454–4469

    Article  Google Scholar 

  15. O. Yilmaz, N. Gindy, and J. Gao, A Repair and Overhaul Methodology for Aeroengine Components, Robot. Comput. Integr. Manuf., 2010, 26(2), p 190–201

    Article  Google Scholar 

  16. S. Mokadem, C. Bezençon, A. Hauert, A. Jacot, and W. Kurz, Laser Repair of Superalloy Single Crystals with Varying Substrate Orientations, Metall. Mater. Trans. A, 2007, 38(7), p 1500–1510

    Article  Google Scholar 

  17. M. Okazaki, I. Ohtera, and Y. Harada, Damage Repair in CMSX-4 Alloy Without Fatigue Life Reduction Penalty, Metall. Mater. Trans. A, 2004, 35(2), p 535–542

    Article  Google Scholar 

  18. M. Brandt, S. Sun, N. Alam, P. Bendeich, and A. Bishop, Laser Cladding Repair of Turbine Blades in Power Plants: from Research to Commercialization, Int. Heat Treat. Surf. Eng., 2009, 3(3), p 105–114

    Article  Google Scholar 

  19. C.Y. Su, C.P. Chou, B.C. Wu, and W.C. Lih, Plasma Transferred Arc Repair Welding of the Nickel-Base Superalloy IN-738LC, J. Mater. Eng. Perform., 1997, 6(5), p 619–627

    Article  Google Scholar 

  20. J. Durocher and N.L. Richards, Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys, J. Mater. Eng. Perform., 2011, 20(7), p 1294–1303

    Article  Google Scholar 

  21. S. Vezzù, S. Rech, E. Vedelago, G.P. Zanon, G. Alfeo, A. Scialpi, and R. Huang, On Deposition of Waspaloy Coatings by Cold Spray, Surf. Eng., 2014, 30(5), p 342–351

    Article  Google Scholar 

  22. S. Vezzù, C. Cavallini, S. Rech, E. Vedelago, and A. Giorgetti, Development of High Strength, High Thermal Conductivity Cold Sprayed Coatings to Improve Thermal Management in Hybrid Motorcycles, SAE Int. J. Mater. Manf., 2015, 8(1), p 180–186

    Article  Google Scholar 

  23. S.R. Bell, Repair and Rejuvenation Procedures for Aero Gas-Turbine Hot-Section Components, Mater. Sci. Technol., 1985, 1(8), p 629–634

    Article  Google Scholar 

  24. P. Wangyao, W. Homkrajai, V. Krongtong, N. Panich, and G. Lothongkum, OM Study of Effect of HIP and Heat Treatments on Microstructural Restoration in Cast Nickel Based Superalloy, IN-738, J. Met. Mater. Miner., 2007, 17(2), p 51–56

    Google Scholar 

  25. A.K. Koul and R. Castillo, Assessment of Service Induced Microstructural Damage and its Rejuvenation in Turbine Blades, Metall. Mater. Trans. A, 1988, 19(8), p 2049–2066

    Article  Google Scholar 

  26. E. Lvova and D. Norsworthy, Influence of Service-Induced Microstructural Changes on the Aging Kinetics of Rejuvenated Ni-Based Superalloy Gas Turbine Blades, J. Mater. Eng. Perform., 2001, 10(3), p 299–312

    Article  Google Scholar 

  27. E. Lvova, A Comparison of Aging Kinetics of New and Rejuvenated Conventionally Cast GTD-111 Gas Turbine Blades, J. Mater. Eng. Perform., 2007, 16(2), p 254–264

    Article  Google Scholar 

  28. S. Holmström and P. Auerkari, Robust Prediction of Full Creep Curves from Minimal Data and Time to Rupture Model, Energy Mater. Mater. Sci. Eng. Energy Syst., 2006, 1(4), p 249–255

    Article  Google Scholar 

  29. Oxford Instruments – INCA. https://www.oxford-instruments.com/products/microanalysis/energy-dispersive-x-ray-systems-eds-edx/eds-for-sem/particle-analysis

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Monti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monti, C., Giorgetti, A., Tognarelli, L. et al. Effects of Multiple Rejuvenation Cycles on Mechanical Properties and Microstructure of IN-738 Superalloy. J. of Materi Eng and Perform 27, 2524–2533 (2018). https://doi.org/10.1007/s11665-018-3335-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3335-5

Keywords

Navigation