A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

  • Bin Sun
  • Zhaoxia Li


A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.


continuum damage corrosion fatigue micro-mechanism pit short crack steel 

List of symbols

\(A_{{{\text{p}}_{i} }} ,\,\alpha_{{{\text{P}}_{i} }}\)

Corrosion pit initiation parameters


Radius of the corrosion pit


Half crack length of short crack

\(c_{{{\text{p}} - {\text{sc}}}}\)

Transition size from corrosion pit to short crack

\(c_{ \hbox{max} }\)

Maximum half crack length of current short cracks

\(C_{\text{sc}} ,\,m_{\text{sc}}\)

Short crack growth parameters


Continuum damage variable


Microscopic damage variable for the ith grain


Grain size


Loading frequency of the cyclic loads


Faraday’s constant

\(\Delta {\text{H}}\)

Activation energy

\({\text{I}}_{{{\text{p}}_{0} }}\)

Current coefficient of the corrosion pit


Stress intensity factor




Molecular weight of the material


Number of corrosion pit or short crack


Number density of corrosion pit or short crack


Corrosion pit initiation rate


Number of cycles


Corrosion fatigue life


Universal gas constant


Area of the mesoscale RVE




Absolute temperature


Shape factor of short crack

\(\Delta \sigma\)

Stress range


Density of material



The work described in this paper was substantially supported by the Fundamental Research Funds for the Central Universities (3205007817), Natural Science Foundation of Jiangsu Province (BK20170655, BK20170655), and the National Program on Key Research Project (2016YFC0701301-02). The authors are very grateful to the reviewers and editor for their constructive comments and suggestions, which helped the authors to improve their paper significantly.


  1. 1.
    S. Dicecco, W. Altenhof, H. Hu, and R. Banting, High-Cycle Fatigue of High-Strength Low Alloy Steel Q345 Subjected To Immersion Corrosion For Mining Wheel Applications, J. Mater. Eng. Perform., 2017, 26, p 1758–1768CrossRefGoogle Scholar
  2. 2.
    R. Ebara, Corrosion Fatigue Crack Initiation in 12% Chromium Stainless Steel, Mater. Sci. Eng. A, 2007, 468–470, p 109–113CrossRefGoogle Scholar
  3. 3.
    M.R. Jahangiri, A.A. Fallah, and A. Ghiasipour, Cement Kiln Dust Induced Corrosion Fatigue Damage Of Gas Turbine Compressor Blades—A Failure Analysis, Mater. Des., 2014, 62, p 288–295CrossRefGoogle Scholar
  4. 4.
    A. Mehmanparast, F. Brennan, and I. Tavares, Fatigue Crack Growth Rates for Offshore Wind Monopile Weldments in Air and Seawater: SLIC Inter-Laboratory Test Results, Mater. Des., 2017, 114, p 494–504CrossRefGoogle Scholar
  5. 5.
    L. Weng, J.X. Zhang, S. Kalnaus, M.L. Feng, and Y.Y. Jiang, Corrosion Fatigue Crack Growth of AISI, 4340 Steel, Int. J. Fatigue, 2013, 48, p 156–164CrossRefGoogle Scholar
  6. 6.
    S. Ishihara, S. Saka, Z.Y. Nan, T. Goshima, H. Shibata, and B.L. Ding, Study on the Pit Growth During Corrosion Fatigue of Aluminum Alloy, Int. J. Mod. Phys. B, 2012, 20, p 3975–3980CrossRefGoogle Scholar
  7. 7.
    K. Genel, M. Demirkol, and T. Gülmez, Corrosion Fatigue Behaviour of Ion Nitrided AISI, 4140 Steel, Mater. Sci. Eng. A, 2000, 288, p 91–100CrossRefGoogle Scholar
  8. 8.
    D.H. Kang, J.K. Lee, and T.W. Kim, Corrosion Fatigue Crack Propagation in a Heat Affected Zone of High-Performance Steel in An Underwater Sea Environment, Eng. Fail. Anal., 2011, 18(2), p 557–563CrossRefGoogle Scholar
  9. 9.
    C.S. Bandara, U.I. Dissanayake, P.B.R. Dissanayake, Novel method for developing S-N curves for corrosion fatigue damage assessment of steel structures. in 6th International Conference on Structural Engineering and Construction Management (Kandy, Sri Lanka, 2015)Google Scholar
  10. 10.
    S.X. Li, AkidR. Corrosion Fatigue Life Prediction of a Steel Shaft Materialin Seawater, Eng. Fail. Anal., 2013, 34, p 324–334CrossRefGoogle Scholar
  11. 11.
    S. Yang, H.Q. Yang, G. Liu, Y. Huang, and L.D. Wang, Approach for Fatigue Damage Assessment of Welded Structure Considering Coupling Effect Between Stress and Corrosion, Int. J. Fatigue, 2016, 88, p 88–95CrossRefGoogle Scholar
  12. 12.
    Z.Y. Han, X.G. Huang, Y.G. Cao, and J.Q. Xu, A Nonlinear Cumulative Evolution Model for Corrosion Fatigue Damage, J. Zhejiang Univ. Science A, 2014, 15(6), p 447–453CrossRefGoogle Scholar
  13. 13.
    K.M. Perkins and M.R. Bache, Corrosion Fatigue of a 12% Cr Low Pressure Turbine Blade Steelin Simulated Service Environments, Int. J. Fatigue, 2005, 27, p 1499–1508CrossRefGoogle Scholar
  14. 14.
    T. Palin-Luc, R. Pérez-Mora, C. Bathias, G. Domínguez, P.C. Paris, and J.L. Arana, Fatigue Crack Initiation and Growth on a Steel in the Very High Cycleregime with Sea Water Corrosion, Eng. Fract. Mech., 2010, 77, p 1953–1962CrossRefGoogle Scholar
  15. 15.
    A. Bashir, W. Dudziński, M. Dudziński, and T. Ptak, Corrosion Fatigue Crack Propagation Rates for Steam Turbine Blade 13% Cr Steels, Solid State Phenom., 2015, 227, p 7–10CrossRefGoogle Scholar
  16. 16.
    A. Valor, F. Caleyo, L. Alfonso, D. Rivas, and J.M. Hallen, Stochastic Modeling of Pitting Corrosion: A New Model for Initiation and Growth of Multiple Corrosion Pits, Corros. Sci., 2007, 49(2), p 559–579CrossRefGoogle Scholar
  17. 17.
    A. Turnbull and S. Zhou, Electrochemical Short Crack Effect in Environmentally Assisted Cracking of a Steam Turbine Blade Steel, Corros. Sci., 2012, 58(58), p 33–40CrossRefGoogle Scholar
  18. 18.
    H. Hu and R. Akid, Cathodic-Polarization Effects on the Long/Short Corrosion-Fatigue Crack Growth Rate of an Offshore Steel, Mater. Sci., 2001, 37(6), p 902–909CrossRefGoogle Scholar
  19. 19.
    O Adedipe, F. Brennan, A. Mehmanparast, A. Kolios, I. Tavares Corrosion Fatigue Crack Growth Mechanisms In Offshore Monopile Steel Weldments. Fatigue & Fracture of Engineering Materials & Structures 2017Google Scholar
  20. 20.
    M.E. May, T. Palin-Luc, N. Saintier, and O. Devos, Effect of Corrosion on the High Cycle Fatigue Strength of Martensitic Stainless Steel X12CrNiMoV12-3, Int. J. Fatigue, 2013, 47(2), p 330–339CrossRefGoogle Scholar
  21. 21.
    L.M. Kachanov, Time of the Rupture Process Under Creep Condition, TVZ AkadNauk SSR Otd Tech Nauk, 1958, 8, p 26–31Google Scholar
  22. 22.
    M. Amiri, A. Arcari, L. Airoldi, M. Naderi, and N.A. Iyyer, Continuum Damage Mechanics Model for Pit-to-Crack Transition in AA2024-T3, Corros. Sci., 2015, 98, p 678–687CrossRefGoogle Scholar
  23. 23.
    W. Zhang and H. Yuan, Corrosion Fatigue Effects on Life Estimation of Deteriorated Bridges Under Vehicle Impacts, Eng. Struct., 2014, 71, p 128–136CrossRefGoogle Scholar
  24. 24.
    W.M. Zhao, Y.X. Wang, T.M. Zhang, and Y. Wang, Study on the Mechanism of High-Cycle Corrosion Fatigue Crack Initiation in X80 Steel, Corros. Sci., 2012, 57, p 99–103CrossRefGoogle Scholar
  25. 25.
    W. Moćko and Z.L. Kowalewski, Dynamic Compression Tests–Current Achievements and Future Development, Eng. Trans., 2011, 59(3), p 235–248Google Scholar
  26. 26.
    P. Shi and S. Mahadevan, Corrosion Fatigue and Multiple Site Damage Reliability Analysis, Int. J. Fatigue, 2003, 25, p 457–469CrossRefGoogle Scholar
  27. 27.
    M.R. Sriraman and R.M. Pidaparti, Crack Initiation Life of Materials Under Combined Pitting Corrosion and Cyclic Loading, J. Mater. Eng. Perform., 2010, 19(1), p 7–12CrossRefGoogle Scholar
  28. 28.
    P. Shi and S. Mahadevan, Damage tolerance approach for probabilistic pitting corrosion fatigue life prediction, Engineering fracture mechanics, 2001, 68(13), p 1493–1507CrossRefGoogle Scholar
  29. 29.
    D.G. Harlow and R.P. Wei, Probabilities of Occurrence and Detection of Damage in Airframe Materials, Fatigue Fract. Eng. Mater. Struct., 1999, 22(5), p 427–436CrossRefGoogle Scholar
  30. 30.
    D.G. Harlow and R.P. Wei, Probability Modelling and Statistical Analysis of Damage in the Lower Wing Skins of Two Retired B-707 Aircraft, Fatigue Fract. Eng. Mater. Struct., 2001, 24(8), p 523–535CrossRefGoogle Scholar
  31. 31.
    B. Sun and Z.X. Li, A Multi-Scale Damage Model for Fatigue Accumulation Due to Short Cracks Nucleation and Growth, Eng. Fract. Mech., 2014, 127, p 280–295CrossRefGoogle Scholar
  32. 32.
    G.S. Chen, K.C. Wan, M. Gao, R.P. Wei, and T.H. Flournoy, Transition from Pitting to Fatigue Crack Growth—Modeling of Corrosion Fatigue Crack Nucleation in a 2024-T3 Aluminum Alloy, Mater. Sci. Eng., A, 1996, 219, p 126–132CrossRefGoogle Scholar
  33. 33.
    B. Sun, Y.L. Xu, and Z.X. Li, Multi-Scale Fatigue Model and Image-Based Simulation of Collective Short Cracks Evolution Process, Comput. Mater. Sci., 2016, 117, p 24–32CrossRefGoogle Scholar
  34. 34.
    R. Pérez-Mora, T. Palin-Luc, C. Bathias, and P.C. Paris, Very High Cycle Fatigue of a High Strength Steel Under Sea Water Corrosion: A Strong Corrosion and Mechanical Damage Coupling, Int. J. Fatigue, 2015, 74, p 156–165CrossRefGoogle Scholar
  35. 35.
    F. Nový, O. BokĤvka, P. Palþek, and M. Chalupová, Effect of Inclusions on Very High Cycle Behaviour in a Ferritic Corrosion Resisting Steel, Proc. Eng., 2011, 10, p 1408–1413CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Department of Engineering Mechanics, Jiangsu Key Laboratory of Engineering MechanicsSoutheast UniversityNanjingChina

Personalised recommendations