The Effect of Prestrain Temperature on Kinetics of Static Recrystallization, Microstructure Evolution, and Mechanical Properties of Low Carbon Steel

  • Edris Akbari
  • Kourosh Karimi Taheri
  • Ali Karimi Taheri


In this research, the samples of a low carbon steel sheet were rolled up to a thickness prestrain of 67% at three different temperatures consisted of room, blue brittleness, and subzero temperature. Microhardness, SEM, and tensile tests were carried out to evaluate the static recrystallization kinetics defined by the Avrami equation, microstructural evolution, and mechanical properties. It was found that the Avrami exponent is altered with change in prestrain temperature and it achieves the value of 1 to 1. 5. Moreover, it was indicated that prestraining at subzero temperature followed by annealing at 600 °C leads to considerable enhancement in tensile properties and kinetics of static recrystallization compared to room and blue brittleness temperatures. The prestraining at blue brittleness temperature followed by annealing treatment caused, however, a higher strength and faster kinetics compared with that at room temperature. It was concluded that although from the steel ductility point of view, the blue brittleness temperature is called an unsuitable temperature, but it can be used as prestraining temperature to develop noticeable combination of strength and ductility in low carbon steel.


annealing treatment Avrami exponent blue brittleness temperature prestrain temperature rolling process static recrystallization tensile properties 



The authors would like to thank the research board of Sharif University of Technology, Tehran, Iran, for the provision of the research facilities used in this work.


  1. 1.
    R. Song, D. Ponge, D. Raabe, J. Speer, and D. Matlock, Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained bcc Steels, Mater. Sci. Eng. A, 2006, 441(1), p 1–17CrossRefGoogle Scholar
  2. 2.
    Y. Ivanisenko, W. Lojkowski, R. Valiev, and H.-J. Fecht, The Mechanism of Formation of Nanostructure and Dissolution of Cementite in a Pearlitic Steel During High Pressure Torsion, Acta Mater, 2003, 51(18), p 5555–5570CrossRefGoogle Scholar
  3. 3.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel Ultra-High Straining Process for Bulk Materials—Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater, 1999, 47(2), p 579–583CrossRefGoogle Scholar
  4. 4.
    R. Valiev, A. Korznikov, and R. Mulyukov, Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Mater. Sci. Eng. A, 1993, 168(2), p 141–148CrossRefGoogle Scholar
  5. 5.
    N. Tsuji and T. Maki, Enhanced Structural Refinement by Combining Phase Transformation and Plastic Deformation in Steels, Scr. Mater., 2009, 60(12), p 1044–1049CrossRefGoogle Scholar
  6. 6.
    R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi, Ultragrain Refinement of Plain Low Carbon Steel by Cold-Rolling and Annealing of Martensite, Acta Mater., 2002, 50(16), p 4177–4189CrossRefGoogle Scholar
  7. 7.
    A. Karimi Taheri, T. Maccagno, and J. J. Jonas, Effect of Cooling Rate After Hot Rolling and of Multistage Strain Aging on the Drawability of Low-Carbon-Steel Wire Rod, Metall. Mater. Trans. A, 1995, 26(5), p 1183–1193CrossRefGoogle Scholar
  8. 8.
    A. Karimi Taheri, T. Maccagno, and J. Jonas, Effect of Quench Aging on Drawability in Low Carbon Steels, Mater. Sci. Technol., 1995, 11(11), p 1139–1146CrossRefGoogle Scholar
  9. 9.
    A. Karimi Taheri, T.M. Maccagno, and J.J. Jonas, Dynamic Strain Aging and the Wire Drawing of Low Carbon Steel Rods, ISIJ Int., 1995, 35(12), p 1532–1540CrossRefGoogle Scholar
  10. 10.
    A. Karmakar, M. Mandal, A. Mandal, M.B. Sk, S. Mukherjee, and D. Chakrabarti, Effect of Starting Microstructure on the Grain Refinement in Cold-Rolled Low-Carbon Steel During Annealing at Two Different Heating Rates, Metall. Mater. Trans. A, 2016, 47(1), p 268–281CrossRefGoogle Scholar
  11. 11.
    Y. Huang and L. Froyen, Important Factors to Obtain Homogeneous and Ultrafine Ferrite–Pearlite Microstructure in low Carbon Steel, J. Mater. Process. Technol., 2002, 124(1), p 216–226CrossRefGoogle Scholar
  12. 12.
    R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi, Effect of Rolling Reduction on Ultrafine Grained Structure and Mechanical Properties of Low-Carbon Steel Thermomechanically Processed from Martensite Starting Structure, Sci. Technol. Adv. Mater., 2004, 5(1), p 153–162CrossRefGoogle Scholar
  13. 13.
    H. Mao, R. Zhang, L. Hua, and F. Yin, Study of Static Recrystallization Behaviors of GCr15 Steel Under Two-Pass Hot Compression Deformation, J. Mater. Eng. Perform., 2015, 24(2), p 930–935CrossRefGoogle Scholar
  14. 14.
    G.K. Mandal, N. Stanford, P. Hodgson, and J.H. Beynon, Static Recrystallisation Study of As-Cast Austenitic Stainless Steel, Mater. Sci. Eng. A, 2013, 576, p 118–125CrossRefGoogle Scholar
  15. 15.
    C.R. Torres, F. Sanchez, A. Gonzalez, F. Actis, and R. Herreara, Study of the Kinetics of the Recrystallization of Cold-Rolled Low-Carbon Steel, Metall. Mater. Trans. A, 2002, 33(1), p 25–31CrossRefGoogle Scholar
  16. 16.
    Y. Lü, D.A. Molodov, and G. Gottstein, Recrystallization Kinetics and Microstructure Evolution During Annealing of a Cold-Rolled Fe–Mn–C Alloy, Acta Mater., 2011, 59(8), p 3229–3243CrossRefGoogle Scholar
  17. 17.
    Y. Lin, M.-S. Chen, and J. Zhong, Study of Static Recrystallization Kinetics in a Low Alloy Steel, Comput. Mater. Sci., 2008, 44(2), p 316–321CrossRefGoogle Scholar
  18. 18.
    Y. Lin and M.-S. Chen, Study of Microstructural Evolution During Static Recrystallization in a Low Alloy Steel, J. Mater. Sci., 2009, 44(3), p 835–842CrossRefGoogle Scholar
  19. 19.
    E. Ahmad, F. Karim, K. Saeed, T. Manzoor, and G. Zahid, Effect of Cold Rolling and Annealing on the Grain Refinement of Low Alloy Steel, IOP Conference Series: Materials Science and Engineering, 2014, IOP Publishing, p 012029Google Scholar
  20. 20.
    P. Saidi, S. Shahandeh, and J.J. Hoyt, Relationship Between Recrystallization Kinetics and the Inhomogeneity of Stored Energy, Metallurgical and Materials Transactions A, 2015, 46(7), p 2975–2985CrossRefGoogle Scholar
  21. 21.
    I. Dolzhenkov, Influence of Deformation Rate on the Blue Brittleness Temperature and Dislocation Density of Carbon Steel, Met. Sci. Heat Treat., 1967, 9(6), p 423–426CrossRefGoogle Scholar
  22. 22.
    R. Doherty, D. Hughes, F. Humphreys, J. Jonas, D.J. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen, and A. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238(2), p 219–274CrossRefGoogle Scholar
  23. 23.
    A. Glezer, V. Rusanenko, O. Zhukov, M. Libman, and A. Klippenshtein, Effect of Cryogenic Deformation on the Structure and Properties Of Chromium-Nickel Steels, Russ. Metall., 2012, 2012(10), p 869CrossRefGoogle Scholar
  24. 24.
    M. Oyarzábal, A. Martínez-de-Guerenu, and I. Gutiérrez, Effect of Stored Energy and Recovery on the Overall Recrystallization Kinetics of a Cold Rolled Low Carbon Steel, Mater. Sci. Eng. A, 2008, 485(1), p 200–209CrossRefGoogle Scholar
  25. 25.
    M. Shirdel, H. Mirzadeh, and M. Parsa, Nano/Ultrafine Grained Austenitic Stainless Steel Through the Formation and Reversion of Deformation-Induced Martensite: Mechanisms, Microstructures, Mechanical Properties, and TRIP Effect, Mater. Charact., 2015, 103, p 150–161CrossRefGoogle Scholar
  26. 26.
    H. Azizi-Alizamini, M. Militzer, and W.J. Poole, Austenite Formation in Plain Low-Carbon Steels, Metall. Mater. Trans. A, 2011, 42(6), p 1544–1557CrossRefGoogle Scholar
  27. 27.
    V. Gavriljuk, Comment on “Cementite Decomposition in Heavily Drawn Pearlite Steel Wire”, Scr. Mater., 2002, 46(2), p 175–177CrossRefGoogle Scholar
  28. 28.
    Z. Lv, S. Sun, Z. Wang, M. Qv, P. Jiang, and W. Fu, Effect of Alloying Elements Addition on Coarsening Behavior of Pearlitic Cementite Particles After Severe Cold Rolling and Annealing, Mater. Sci. Eng. A, 2008, 489(1), p 107–112CrossRefGoogle Scholar
  29. 29.
    H. Wu, L. Du, Z. Ai, and X. Liu, Static Recrystallization and Precipitation Behavior of a Weathering Steel Microalloyed with Vanadium, J. Mater. Sci. Technol., 2013, 29(12), p 1197–1203CrossRefGoogle Scholar
  30. 30.
    J. Huang, W. Poole, and M. Militzer, Austenite Formation During Intercritical Annealing, Metall. Mater. Trans. A, 2004, 35(11), p 3363–3375CrossRefGoogle Scholar
  31. 31.
    T. Ungár and A. Borbély, The Effect of Dislocation Contrast on x-ray Line Broadening: A New Approach to Line Profile Analysis, Appl. Phys. Lett., 1996, 69(21), p 3173–3175CrossRefGoogle Scholar
  32. 32.
    T. Ungár, I. Dragomir, A. Revesz, and A. Borbély, The Contrast Factors of Dislocations in Cubic Crystals: The Dislocation Model of Strain Anisotropy in Practice, J. Appl. Crystallogr., 1999, 32(5), p 992–1002CrossRefGoogle Scholar
  33. 33.
    F.J. Humphreys and M. Hatherly, Recrystallization And Related Annealing Phenomena, Elsevier, Amsterdam, 2012Google Scholar
  34. 34.
    Y. Mazaheri, A. Kermanpur, A. Najafizadeh, and A.G. Kalashami, Kinetics of Ferrite Recrystallization and Austenite Formation During Intercritical Annealing of the Cold-Rolled Ferrite/Martensite Duplex Structures, Metall. Mater. Trans. A, 2016, 47(3), p 1040–1051CrossRefGoogle Scholar
  35. 35.
    S. Etesami and M. Enayati, Microstructural Evolution and Recrystallization Kinetics of a Cold-Rolled, Ferrite-Martensite Structure During Intercritical Annealing, Metall. Mater. Trans. A, 2016, 47(7), p 3271–3276CrossRefGoogle Scholar
  36. 36.
    Z. Zeng, L. Chen, F. Zhu, and X. Liu, Static Recrystallization Behavior of a Martensitic Heat-Resistant Stainless Steel 403 Nb, Acta Metall. Sin. (Engl. Lett.), 2011, 24(5), p 381–389Google Scholar
  37. 37.
    M. Ullmann, M. Graf, and R. Kawalla, Static Recrystallization Kinetics of a Twin-Roll Cast AZ31 Alloy, Mater. Today Proc., 2015, 2, p S212–S218CrossRefGoogle Scholar
  38. 38.
    M. Kulakov, W. Poole, and M. Militzer, The Effect of the Initial Microstructure on Recrystallization and Austenite Formation in a DP600 Steel, Metall. Mater. Trans. A, 2013, 44(8), p 3564–3576CrossRefGoogle Scholar
  39. 39.
    D. Yang, E. Brown, D. Matlock, and G. Krauss, Ferrite Recrystallization and Austenite Formation in Cold-Rolled Intercritically Annealed Steel, Metall. Trans. A, 1985, 16(8), p 1385–1392CrossRefGoogle Scholar
  40. 40.
    H. Ashrafi and A. Najafizadeh, Fabrication of the Ultrafine Grained Low Carbon Steel by Cold Compression and Annealing of Martensite, Trans. Indian Inst. Met., 2016, 69(8), p 1467–1473CrossRefGoogle Scholar
  41. 41.
    D.H. Shin, B.C. Kim, K.-T. Park, and W.Y. Choo, Microstructural Changes in Equal Channel Angular Pressed Low Carbon Steel by Static Annealing, Acta Mater., 2000, 48(12), p 3245–3252CrossRefGoogle Scholar
  42. 42.
    J. Kirkaldy and D. Venugopolan, Phase Transformations in Ferrous Alloys, eds, AR Marder and JI Goldstein, AIME,(Warrendale, PA: AIME, 1984), 125, (1984)Google Scholar
  43. 43.
    H. Hu and S. Goodman, Effect of Manganese on the Annealing Texture and Strain Ratio of Low-Carbon Steels, Metall. Mater. Trans. B, 1970, 1(11), p 3057–3064Google Scholar
  44. 44.
    M.-C. Zhao, T. Hanamura, F. Yin, H. Qiu, and K. Nagai, Formation of Bimodal-Sized Structure and its Tensile Properties In A Warm-Rolled and Annealed Ultrafine-Grained Ferrite/Cementite Steel, Metallurgical and Materials Transactions A, 2008, 39(7), p 1691–1701CrossRefGoogle Scholar
  45. 45.
    J. Arruabarrena, B. López, and J.M. Rodriguez-Ibabe, Influence of Prior Warm Deformation on Cementite Spheroidization Process in a Low-Alloy Medium Carbon Steel, Metall. Mater. Trans. A, 2014, 45(3), p 1470–1484CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Edris Akbari
    • 1
  • Kourosh Karimi Taheri
    • 2
  • Ali Karimi Taheri
    • 1
  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran
  2. 2.Mechanical and Industrial Engineering DepartmentNortheastern UniversityBostonUSA

Personalised recommendations