Advertisement

Effect of the Combined Addition of Y and Ti on the Second Phase and Mechanical Properties of China Low-Activation Martensitic Steel

  • Yangpeng Zhang
  • Dongping Zhan
  • Xiwei Qi
  • Zhouhua Jiang
  • Huishu Zhang
Article

Abstract

In this study, approximately 0.35% Ti and two different Y contents were added to China low-activation martensitic (CLAM) steel during melting in a vacuum induction melting furnace. Scanning electron microscopy, transmission electron microscopy, x-ray diffraction, tensile tests, and Charpy impact tests were used to investigate the effects of the combined addition of Y and Ti on the second phase and mechanical properties. The results indicated that Y and Fe formed the large intermetallic compound Fe-Y; the compound easily aggregated in the grain boundaries and exhibited the strength of CLAM steel. Ti did not combine with Y to form the Y-Ti-O phase; however, it could combine with Ta and W to form MC precipitates, which were generally in the 20-50 nm size range. The CLAM steel with a higher Y content exhibited lower yield and tensile strengths at room temperature, with both steels yielding almost identical strengths at 600 °C.

Keywords

CLAM steel mechanical properties rare earths second phase titanium yttrium 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Number 51574063) and Fundamental Research Funds for the Central Universities (Grant Numbers N150204012, N152306001). The authors would like to thank Enago (www.enago.cn) for the English language review.

References

  1. 1.
    R.L. Klueh, Reduced-Activation Steels: Future Development for Improved Creep Strength, J. Nucl. Mater., 2008, 378(2), p 159–166CrossRefGoogle Scholar
  2. 2.
    Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R.J. Kurtz, R. Lindau, T. Muroga, G.R. Odette, B. Raj, R.E. Stoller, L. Tan, H. Tanigawa, A.-A.F. Tavassoli, T. Yamamoto, F. Wan, and Y. Wu, Recent Progress of R&D Activities on Reduced Activation Ferritic/Martensitic Steels, J. Nucl. Mater., 2013, 442(1–3), p S2–S8CrossRefGoogle Scholar
  3. 3.
    Q. Huang and F.D.S. Team, Development Status of CLAM Steel for Fusion Application, J. Nucl. Mater., 2014, 455(1–3), p 649–654CrossRefGoogle Scholar
  4. 4.
    R.L. Klueh, D.S. Gelles, S. Jitsukawa, A. Kimura, G.R. Odette, B. van der Schaaf, and M. Victoria, Ferritic/Martensitic Steels—Overview of Recent Results, J. Nucl. Mater., 2002, 307(1), p 455–465CrossRefGoogle Scholar
  5. 5.
    A. Kimura, T. Sawai, K. Shiba, A. Hishinuma, S. Jitsukawa, S. Ukai, and A. Kohyama, Recent Progress in Reduced Activation Ferritic Steels R&D in Japan, Nucl. Fusion, 2003, 43(10), p 1246–1249CrossRefGoogle Scholar
  6. 6.
    A. Kimura, H.-S. Cho, N. Toda, R. Kasada, K. Yutani, H. Kishimoto, N. Iwata, S. Ukai, and M. Fujiwara, High Burnup Fuel Cladding Materials R&D for Advanced Nuclear Systems, J. Nucl. Sci. Technol., 2007, 44, p 323–328CrossRefGoogle Scholar
  7. 7.
    S. Ukai and M. Fujiwara, Perspective of ODS Alloys Application in Nuclear Environments, J. Nucl. Mater., 2002, 307(1), p 749–757CrossRefGoogle Scholar
  8. 8.
    S. Ukai, T. Nishida, T. Okuda, and T. Yoshitake, R&D of Oxide Dispersion Strengthened Ferritic Martensitic Steels for FBR, J. Nucl. Mater., 1998, 258, p 1745–1749CrossRefGoogle Scholar
  9. 9.
    G.R. Odette, M.J. Alinger, and B.D. Wirth, Recent Development in Irradiation-Resistant Steels, Annu. Rev. Mater. Res., 2008, 38, p 471–503CrossRefGoogle Scholar
  10. 10.
    S. Ukai, T. Kaito, S. Ohtsuka, T. Narita, M. Fujiwara, and T. Kobayashi, Production and Properties of Nano-Scale Oxide Dispersion Strengthened (ODS) 9Cr Martensitic Steel Claddings, ISIJ Int., 2003, 43(12), p 2038–2045CrossRefGoogle Scholar
  11. 11.
    G. Ji, T. Grosdidier, N. Bozzolo, and S. Launois, The Mechanisms of Microstructure Formation in a Nanostructured Oxide Dispersion Strengthened FeAl Alloy Obtained by Spark Plasma Sintering, Intermetallics, 2007, 15(2), p 108–118CrossRefGoogle Scholar
  12. 12.
    B.W. Zhou, G.Q. Li, X.L. Wan, Y. Li, and K.M. Wu, In-Situ Observation of Grain Refinement in the Simulated Heat-Affected Zone of High-Strength Low-Alloy Steel by Zr-Ti Combined Deoxidation, Met. Mater. Int., 2016, 22(2), p 267–275CrossRefGoogle Scholar
  13. 13.
    J.H. Shim, Y.W. Cho, S.H. Chung, J.D. Shim, and D.N. Lee, Nucleation of Intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel, Acta Mater., 1999, 47(9), p 2751–2760CrossRefGoogle Scholar
  14. 14.
    W.T. Han, A. Kimura, N. Tsuda, H. Serizawa, D.S. Chen, H. Je, H. Fujii, Y. Ha, Y. Morisada, and H. Noto, Effects of Mechanical Force on Grain Structures of Friction Stir Welded Oxide Dispersion Strengthened Ferritic Steel, J. Nucl. Mater., 2017, 455, p 46–50CrossRefGoogle Scholar
  15. 15.
    L. Commin, M. Rieth, V. Widak, B. Dafferner, S. Heger, H. Zimmermann, E. Matern-Morris, and R. Lindau, Characterization of ODS (Oxide Dispersion Strengthened) Eurofer/Eurofer Dissimilar Electron Beam Welds, J. Nucl. Mater., 2013, 442, p 552–556CrossRefGoogle Scholar
  16. 16.
    C. Ma, L. Chen, C.Z. Cao, and X.C. Li, Nanoparticle-Induced Unusual Melting and Solidification Behaviours of Metals, Nat. Commun., 2017, 8, p 14178.  https://doi.org/10.1038/ncomms14178 CrossRefGoogle Scholar
  17. 17.
    J.S. Byun, J.H. Shim, Y.W. Cho, and D.N. Lee, Non-Metallic Inclusions and Intragranular Nucleation of Ferrite in Ti-Killed C-Mn Steel, Acta Mater., 2003, 51, p 1593–1606CrossRefGoogle Scholar
  18. 18.
    J.H. Shim, Y.J. Oh, J.Y. Suh, Y.W. Cho, J.D. Shim, J.S. Byun, and D.N. Lee, Ferrite Nucleation Potency of Non-metallic Inclusions in Medium Carbon Steels, Acta Mater., 2001, 49, p 2115–2122CrossRefGoogle Scholar
  19. 19.
    G. Skandan, C.M. Foster, H. Frase, M.N. Ali, J.C. Parker, and H. Hahn, Phase Characterization and Stabilization Due to Grain Size Effects of Nanostructured Y2O3, Nanostruct. Mater., 1992, 1(4), p 313–322CrossRefGoogle Scholar
  20. 20.
    A.J. London, S. Santra, S. Amirthapandian, B.K. Panigrahi, R.M. Sarguna, S. Balaji, R. Vijay, C.S. Sundar, S. Lozano-Perez, and C.R.M. Grovenor, Effect of Ti and Cr on Dispersion, Structure and Composition of Oxide Nano-Particles in Model ODS Alloys, Acta Mater., 2015, 97, p 223–233CrossRefGoogle Scholar
  21. 21.
    Y.F. Li, Q.Y. Huang, Y.C. Wu, Y.N. Zheng, Y. Zuo, and S.Y. Zhu, Effects of Addition of Yttrium on Properties and Microstructure for China Low Activation Martensitic (CLAM) Steel, Fusion Eng. Des., 2007, 82, p 2683–2688CrossRefGoogle Scholar
  22. 22.
    X.W. Zhai, S.J. Liu, and Y.Y. Zhao, Effect of Tantalum Content on Microstructure and Tensile Properties of CLAM Steel, Fusion Eng. Des., 2016, 104, p 21–27CrossRefGoogle Scholar
  23. 23.
    J. Zackrisson and H.O. Andrén, Effect of Carbon Content on the Microstructure and Mechanical Properties of (Ti, W, Ta, Mo) (C, N) ± (Co, Ni) Cermets, Int. J. Refract. Metals Hard Mater., 1999, 17(4), p 265–273CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Yangpeng Zhang
    • 1
  • Dongping Zhan
    • 2
  • Xiwei Qi
    • 1
  • Zhouhua Jiang
    • 2
  • Huishu Zhang
    • 3
  1. 1.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.School of MetallurgyNortheastern UniversityShenyangChina
  3. 3.Metallurgical Engineering CollegeLiaoning Institute of Science and TechnologyBenxiChina

Personalised recommendations