Ultrafine-Grained Pure Ti Processed by New SPD Scheme Combining Drawing with Shear

  • A. G. Raab
  • E. V. Bobruk
  • G. I. Raab


The paper displays the results of the studies and analysis of a promising severe plastic deformation scheme that implements the conditions of a non-monotonous impact during shear drawing of long-length bulk metal materials. The paper describes the efficiency of the proposed severe plastic deformation technique to form a gradient ultrafine-grained state in rod-shaped billets on the example of commercially pure Ti and its further development for future industrial applications.


deformation and fracture metallurgy metals and alloys microstructure structural 



This work was supported by the Ufa State Aviation Technical University grant No.16.7268.2017/8.9 (BEV) and the Ministry of Education and Science of the Russian Federation program NSh-7996.2016.8 (RAG).


  1. 1.
    R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51, p 881–981CrossRefGoogle Scholar
  2. 2.
    C.C. Koch, Optimization of Strength and Ductility in Nanocrystalline and Ultrafine Grained Metals, Scripta Mater., 2003, 49, p 657–662CrossRefGoogle Scholar
  3. 3.
    R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation, J. Mater. Res., 2002, 17, p 5–8CrossRefGoogle Scholar
  4. 4.
    R.Z. Valiev, I. Sabirov, A.P. Zhilyaev, and T.G. Langdon, Bulk Nanostructured Metals for Innovative Applications, JOM, 2012, 64, p 1134–1142CrossRefGoogle Scholar
  5. 5.
    T.G. Langdon, M. Furukawa, M. Nemoto, and Z. Horita, Using Equal-Channel Angular Pressing for Refining Grain Size, JOM, 2000, 52, p 30–33CrossRefGoogle Scholar
  6. 6.
    Y. Ivanisenko, R. Kulagin, V. Fedorov, A. Mazilkin, T. Scherer, B. Baretzky, and H. Hahn, High Pressure Torsion Extrusion as a New Severe Plastic Deformation Process, Mater. Sci. Eng., A, 2016, 664, p 247–256CrossRefGoogle Scholar
  7. 7.
    F.Z. Utyashev and G.I. Raab, The Model of Structure Refinement in Metals at Large Deformations and Factors Effecting Grain Sizes, Rev. Adv. Mater. Sci., 2006, 11, p 137–151Google Scholar
  8. 8.
    A.V. Polyakov, L. Dluhos, G.S. Dyakonov, G.I. Raab, and R.Z. Valiev, Recent Advances in Processing and Application of Nanostructured Titanium for Dental Implants, Adv. Eng. Mater., 2015, 17, p 1869–1875CrossRefGoogle Scholar
  9. 9.
    S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, S.P. Malysheva, G.A. Salishchev, and S.L. Semiatin, Evolution of Grain and Subgrain Structure during Cold Rolling of Commercial-Purity Titanium, Mater. Sci. Eng., A, 2011, 2011528, p 3472–3479Google Scholar
  10. 10.
    I. Sabirov, R.Z. Valiev, I.P. Semenova, and R. Pippan, Effect of Equal Channel Angular Pressing on the Fracture Behavior of Commercially Pure Titanium, Metall. Mater. Trans., 2010, 41A, p 727–733CrossRefGoogle Scholar
  11. 11.
    M.M. Abramova, N.A. Enikeev, J.G. Kim, R.Z. Valiev, M.V. Karavaeva, and H.S. Kim, Structural and Phase Transformation in a TWIP Steel Subjected to High Pressure Torsion, Mater. Lett., 2016, 166, p 321–342CrossRefGoogle Scholar
  12. 12.
    V. Varyukhin, Y. Beygelzimer, S. Synkov, and D. Orlov, Application of Twist Extrusion, Mater. Sci. Forum, 2006, 503–504, p 335–340CrossRefGoogle Scholar
  13. 13.
    X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, and Y. Zhu, Heterogeneous Lamella Structure Unites Ultrafine-Grain Strength with Coarse-Grain Ductility, Proc. Natl. Acad. Sci. U.S.A., 2015, 112(47), p 14501–14505CrossRefGoogle Scholar
  14. 14.
    K. Lu, Making Strong Nanomaterials Ductile with Gradients, Science, 2014, 345(6203), p 1455–1456CrossRefGoogle Scholar
  15. 15.
    X.L. Wu, P. Jiang, L. Chen, and Y.T. Zhu, Synergetic Strengthening by Gradient Structure, Mater. Res. Lett., 2014, 2, p 185–191CrossRefGoogle Scholar
  16. 16.
    V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev, Grain Refinement and Properties of Pure Ti Processed by Warm ECAP and Cold Rolling, Mater. Sci. Eng., A, 2003, 343, p 43–50CrossRefGoogle Scholar
  17. 17.
    V.V. Stolyarov, Y.T. Zhu, G.I. Raab, A.I. Zharikov, and R.Z. Valiev, Effect of Initial Microstructure on the Microstructural Evolution and Mechanical Properties of Ti During Cold Rolling, Mater. Sci. Eng., A, 2004, 385, p 309–313CrossRefGoogle Scholar
  18. 18.
    B.A. Kolachev, I.S. Polkin, and V.D. Talalaev, Ti alloys of Different Countries: Reference Book. M:VILS, 2000Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Institute of Physics of Advanced MaterialsUfa State Aviation Technical UniversityUfaRussia
  2. 2.Laboratory for Mechanics of Bulk Nanostructured MaterialsSaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations