Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1898–1907 | Cite as

Microstructure and Mechanical Properties of Dissimilar Joints of Al-Mg2Si and 5052 Aluminum Alloy by Friction Stir Welding

  • B. W. Huang
  • Q. D. Qin
  • D. H. Zhang
  • Y. J. Wu
  • X. D. Su
Article
  • 151 Downloads

Abstract

Al-Mg2Si alloy and 5052 Al alloy were welded successfully by friction stir welding (FSW) in this study. The results show that the alloy consists of three distinct zones after FSW: the base material zone (BMZ), the transitional zone, and the weld nugget (WN). The morphologies of the primary Mg2Si phases are identified as coarse equiaxed crystals for Al-Mg2Si alloys in the BMZ. The WN is a mixture of rich Al-Mg2Si and rich 5052 alloy, and a banded structure is formed in the zone. Interestingly, in the WN, the equiaxed crystals changed to polygonal particles with substantially reduced sizes in the rich Al-Mg2Si zone. However, in addition to the white rich Mg phase appearing in the rich 5052 zone near the interface, the 5052 alloy does not show obvious changes. The hardness gradually increases from the BMZ of the 5052 to the welded joint to the Al-Mg2Si BMZ. In addition, the ultimate tensile strength (UTS) of the welded joint is higher than that of the base material of the Al-Mg2Si, whereas it is lower than that of the 5052 base alloy. The results of the elongation are similar to the UTS results. The fracture mechanism is also investigated.

Keywords

friction stir welding dissimilar weld microstructure mechanical properties 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China [51564005]; the Program for the Distinguished Young Scientific Talents of Guizhou [Qian Ke He Platform and talent (2017) 5633]; the New Process Engineering Research Center of Process industry, Guizhou Province [Qian Jiao He KY(2017) 021]; the Key Laboratory of Light Metal Materials Processing of Guizhou Province [Qian Ke He Platform and talent (2016) 5104]; and the Scientific &Technological Innovation Talent Team of Guizhou Province [Qian Ke He Talent Team (2015) 4008].

References

  1. 1.
    W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent Development in Aluminium Alloys for the Automotive Industry, Mater. Sci. Eng. A, 2000, 280, p 37–49CrossRefGoogle Scholar
  2. 2.
    A. Akhlaghi, M. Noghani, and M. Emamy, The Effect of La-Intermetallic Compounds on Tensile Properties of Al-15%Mg2Si In-Situ Composite, Proc. Mater. Sci., 2015, 11, p 55–60CrossRefGoogle Scholar
  3. 3.
    G. Bai, Z. Liu, J. Lin, Z. Yu, Y. Hu, and C. Wen, Effects of the Addition of Lanthanum and Ultrasonic Stirring on the Microstructure and Mechanical Properties of the In Situ Mg2Si/Al Composites, Mater. Des., 2016, 90, p 424–432CrossRefGoogle Scholar
  4. 4.
    S.E. Vaziri Yeganeh, A. Razaghian, and M. Emamy, The Influence of Cu-P Master Alloy on the Microstructure and Tensile Properties of Al-25 wt.% Mg2Si Composite Before and After Hot-Extrusion, Mater. Sci. Eng. A, 2013, 566, p 1–7CrossRefGoogle Scholar
  5. 5.
    S. Sree Sabari, S. Malarvizhi, and V. Balasubramanian, Characteristics of FSW and UWFSW Joints of AA2519-T87 Aluminium Alloy: Effect of Tool Rotation Speed, J. Manuf. Process, 2016, 22, p 278–289CrossRefGoogle Scholar
  6. 6.
    Q. Wang, Z. Zhao, Y. Zhao, K. Yan, C. Liu, and H. Zhang, The Strengthening Mechanism of Spray Forming Al-Zn-Mg-Cu Alloy by Underwater Friction Stir Welding, Mater. Des., 2016, 102, p 91–99CrossRefGoogle Scholar
  7. 7.
    S. Ji, X. Meng, Z. Liu, R. Huang, and Z. Li, Dissimilar Friction Stir Welding of 6061 Aluminum Alloy and AZ31 Magnesium Alloy Assisted with Ultrasonic, Mater. Lett., 2017, 201, p 173–176CrossRefGoogle Scholar
  8. 8.
    Y.J. Kwon, I. Shigematsu, and N. Saito, Dissimilar Friction Stir Welding Between Magnesium and Aluminum Alloys, Mater. Lett., 2008, 62, p 3827–3829CrossRefGoogle Scholar
  9. 9.
    M. Avettand-Fènoëla and A. Simar, A Review About Friction Stir Welding of Metal Matrix Composites, Mater. Charact., 2016, 120, p 1–17CrossRefGoogle Scholar
  10. 10.
    H. Nami, H. Adgi, M. Sharifitabar, and H. Shamabadi, Microstructure and Mechanical Properties of Friction Stir Welded Al/Mg2Si Metal Matrix Cast Composite, Mater. Des., 2011, 32, p 976–983CrossRefGoogle Scholar
  11. 11.
    O.S. Salih, H. Ou, W. Sun, and D.G. McCartney, A Review of Friction Stir Welding of Aluminium Matrix Composites, Mater. Des., 2015, 86, p 67–71CrossRefGoogle Scholar
  12. 12.
    A. Tongnea, C. Desrayaudb, M. Jahazic, and E. Feulvarcha, On Material Flow in Friction Stir Welded Al Alloys, J. Mater. Process. Technol., 2017, 239, p 284–296CrossRefGoogle Scholar
  13. 13.
    M. Sharifitabar and H. Nami, Microstructures of Dissimilar Friction Stir Welded Joints Between 2024-T4 Aluminum Alloy and Al/Mg2Si Metal Matrix Cast Composite, Compos. B, 2011, 42, p 2004–2012CrossRefGoogle Scholar
  14. 14.
    H. Sidhar, N.Y. Martinez, R.S. Mishra, and J. Silvanus, Friction Stir Welding of Al-Mg-Li 1424 Alloy, Mater. Des., 2016, 106, p 146–152CrossRefGoogle Scholar
  15. 15.
    Q.D. Qin, W.X. Li, K.W. Zhao, S.L. Qiu, and Y.G. Zhao, Effect of Modification and Aging Treatment on Mechanical Properties of Mg2Si/Al Composite, Mater. Sci. Eng. A, 2010, 527, p 2253–2257CrossRefGoogle Scholar
  16. 16.
    C. Li, Y.Y. Wu, H. Li, and X.F. Liu, Morphological Evolution and Growth Mechanism of Primary Mg2Si Phase in Al-Mg2Si Alloys, Acta Mater., 2011, 59, p 1058–1067CrossRefGoogle Scholar
  17. 17.
    Q.D. Qin, Y.G. Zhao, W. Zhou, and P.J. Cong, Effect of Phosphorus on Microstructure and Growth Manner of Primary Mg2Si Crystal in Mg2Si/Al Composite, Mater. Sci. Eng. A, 2007, 447, p 186–191CrossRefGoogle Scholar
  18. 18.
    W. Xu, Z. Li, and X. Sun, Effect of Welding Speed on Mechanical Properties and the Strain-Hardening Behavior of Friction Stir Welded 7075 Aluminum Alloy Joints, J. Mater. Eng. Perform., 2017, 26, p 1938–1946CrossRefGoogle Scholar
  19. 19.
    F. Gratecap, M. Girard, S. Marya, and G. Racineux, Exploring Material Flow in Friction Stir Welding: Tool Eccentricity and Formation of Banded Structures, Int. J. Mater. Form., 2011, 5, p 99–107CrossRefGoogle Scholar
  20. 20.
    K. Kumar and S. Kailas, The Role of Friction Stir Welding Tool on Material Flow and Weld Formation, Mater. Sci. Eng. A, 2008, 485, p 367–374CrossRefGoogle Scholar
  21. 21.
    R. Palanivel, P. Koshy Mathews, N. Murugan, and I. Dinaharan, Effect of Tool Rotational Speed and Pin Profile on Microstructure and Tensile Strength of Dissimilar Friction Stir Welded AA5083-H111 and AA6351-T6 Aluminum Alloys, Mater. Des., 2012, 40, p 7–16CrossRefGoogle Scholar
  22. 22.
    C. Cheng, C. Lee, and J. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31Mg Alloys, Scr. Mater., 2004, 51, p 509–514CrossRefGoogle Scholar
  23. 23.
    H. Yu, H. Wang, L. Chen, M. Zha, C. Wang, C. Li, and Q. Jiang, Spheroidization of Primary Mg2Si in Al-20Mg2Si-4.5Cu Alloy Modified with Ca and Sb During T6 Heat Treatment Process, Mater. Sci. Eng. A, 2017, 685, p 31–38CrossRefGoogle Scholar
  24. 24.
    H.Y. Wang, F. Liu, L. Chen, M. Zha, G.J. Liu, and Q.C. Jiang, The Effect of Sb Addition on Microstructures and Tensile Properties of Extruded Al-20Mg2Si-4Cu Alloy, Mater. Sci. Eng. A, 2016, 657, p 331–338CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • B. W. Huang
    • 1
  • Q. D. Qin
    • 1
    • 2
  • D. H. Zhang
    • 2
  • Y. J. Wu
    • 2
    • 3
  • X. D. Su
    • 1
  1. 1.Key Laboratory of Light Metal Materials Processing Technology of Guizhou ProvinceGuizhou Institute of TechnologyGuiyangPeople’s Republic of China
  2. 2.Department of Materials and Metallurgy EngineeringGuizhou Institute of TechnologyGuiyangPeople’s Republic of China
  3. 3.2011 Special Functional Materials Collaborative Innovation Center of Guizhou ProvinceGuiyangPeople’s Republic of China

Personalised recommendations