Microstructures and Mechanical Properties of Inconel 718 Alloy at Ultralow Temperatures

  • C. G. Yao
  • H. J. Lv
  • D. Q. Yi
  • S. Meng
  • L. R. Xiao
  • B. Wang


The microstructures and mechanical properties of powder metallurgy Inconel 718 alloy were investigated in the temperatures range between 25 and − 253 °C. Tensile strength increased with the decrease in temperature, while the ductility first increased and then decreased. There was no significant change in impact toughness. When the temperature was − 253 °C, a zigzag stress–strain curve was observed for the alloy, owing to the interaction of dislocation glide and twinning, which effectively maintained the relatively good ductility.


Inconel 718 alloy mechanical properties microstructure powder metallurgy ultralow temperature 



The authors would like to thank the financial support of the National Natural Science Foundation of China (U1637210) and the Project of Innovation-driven Plan in Central South University (51271203). The authors would also like to thank Kathryn Sole, PhD, from Liwen Bianji, Edanz Group China (, for editing the English text of a draft of this manuscript.


  1. 1.
    T.S. Byun and K. Farrell, Tensile Properties of Inconel 718 After Low Temperature Neutron Irradiation, J. Nucl. Mater., 2003, 318, p 292–299CrossRefGoogle Scholar
  2. 2.
    J. Xu, Z. Huang, and L. Jiang, Effect of Heat Treatment on Low Cycle Fatigue of IN718 Superalloy at the Elevated Temperatures, Mater. Sci. Eng. A, 2017, 690, p 137–145CrossRefGoogle Scholar
  3. 3.
    R. Sharghi-Moshtaghin, H. Kahn, and Y. Ge, Low-Temperature Carburization of the Ni-Base Superalloy IN718: Improvements in Surface Hardness and Crevice Corrosion Resistance, Metal. Mater. Trans. A, 2010, 41, p 2022–2032CrossRefGoogle Scholar
  4. 4.
    K. Prasad, R. Sarkar, and P. Ghosal, High Temperature Low Cycle Fatigue Deformation Behaviour of Forged IN718 Superalloy Turbine Disc, Mater. Sci. Eng. A, 2013, 568, p 239–245CrossRefGoogle Scholar
  5. 5.
    T.H. Sanders, R.E. Frishmuth, and G.T. Embley, Temperature Dependent Deformation Mechanisms of Alloy 718 in Low Cycle Fatigue, Metal. Mater. Trans. A, 1981, 12, p 1003–1010CrossRefGoogle Scholar
  6. 6.
    J.M. Zhang, Z.Y. Gao, and J.Y. Zhuang, Strain-Rate Hardening Behavior of Superalloy IN718, J. Mater. Process. Technol., 1997, 70, p 252–257CrossRefGoogle Scholar
  7. 7.
    H. Andersson and C. Persson, In-Situ SEM Study of Fatigue Crack Growth Behaviour in IN718, Int. J. Fatigue, 2004, 26, p 211–219CrossRefGoogle Scholar
  8. 8.
    P.L. Blackwell, The Mechanical and Microstructural Characteristics of Laser-Deposited IN718, J. Mater. Process. Technol., 2005, 170, p 240–246CrossRefGoogle Scholar
  9. 9.
    H. Andersson, C. Persson, and T. Hansson, Crack Growth in IN718 at High Temperature, Int. J. Fatigue, 2001, 23, p 817–827CrossRefGoogle Scholar
  10. 10.
    S.V.S.N. Murty and B.N. Rao, On the Flow Localization Concepts in the Processing Maps of IN718, Mater. Sci. Eng. A, 1999, 267, p 159–161CrossRefGoogle Scholar
  11. 11.
    M. Becker and H.P. Hackenberg, A Constitutive Model for Rate Dependent and Rate Independent Inelasticity. Application to IN718, Int. J. Plast., 2011, 27, p 596–619CrossRefGoogle Scholar
  12. 12.
    T. Teramoto, Y. Kayamori, and T. Denda, Factors Influencing Fracture Mechanism of IN718 at Cryogenic Temperature, Trans. Jpn. Soc. Mech. Eng. A, 1995, 61, p 553–560CrossRefGoogle Scholar
  13. 13.
    E.A. Loria, Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendales, 1994, p 545–555Google Scholar
  14. 14.
    Y. Ono, T. Yuri, and H. Sumiyoshi, High-Cycle Fatigue Properties at Cryogenic Temperatures in Inconel 718 Nickel-Based Superalloy, Mater. Trans., 2004, 45, p 342–345CrossRefGoogle Scholar
  15. 15.
    Ö. Özgün, H.Ö. Gülsoy, R. Yılmaz, and F. Fındık, Microstructural and Mechanical Characterization of Injection Molded 718 Superalloy Powders, J. Alloys Compd., 2013, 576, p 140–153CrossRefGoogle Scholar
  16. 16.
    Z.M. Wang, K. Guan, M. Gao, X.Y. Li, X.F. Chen, and X.Y. Zeng, The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting, J. Alloys Compd., 2010, 513, p 518–523CrossRefGoogle Scholar
  17. 17.
    G.A. Rao, M. Srinivas, and D.S. Sarma, Influence of Modified Processing on Structure and Properties of Hot Isostatically Pressed Superalloy Inconel 718, Mater. Sci. Eng. A, 2006, 418, p 282–291CrossRefGoogle Scholar
  18. 18.
    G.A. Rao, K.S. Prasad, and M. Kumar, Characterisation of Hot Isostatically Pressed Nickel Base Superalloy Inconel 718, Mater. Sci. Technol., 2003, 19, p 313–321CrossRefGoogle Scholar
  19. 19.
    G.A. Rao, M. Kumar, and M. Srinivas, Effect of Standard Heat Treatment on the Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy Inconel 718, Mater. Sci. Eng. A, 2003, 355, p 114–125CrossRefGoogle Scholar
  20. 20.
    G.A. Rao, M. Srinivas, and D.S. Sarma, Effect of Oxygen Content of Powder on Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy Inconel 718, Mater. Sci. Eng. A, 2006, 435–436, p 84–99CrossRefGoogle Scholar
  21. 21.
    A. Nowotnik and J. Sieniawski, Effect of Thermomechanical Working on the Microstructure and Mechanical Properties of Hot Pressed Superalloy Inconel 718. Superalloy 718 and Derivatives, John Wiley & Sons, Inc., Hoboken, 2012, p 382–396Google Scholar
  22. 22.
    K.N. Amato, S.M. Gaytan, L.E. Murr, and E. Martinez, Microstructures and Mechanical Behavior of Inconel 718 Fabricated by Selective Laser Melting, Acta Mater., 2012, 60, p 2229–2239CrossRefGoogle Scholar
  23. 23.
    A.K. Koul, W. Wallace, and R. Thamburaj, Problems and Possibilities for Life Extension in Gas Turbine Components, AGARD Conference Proceedings, Vol 368, 1984, p 10.1–10.32Google Scholar
  24. 24.
    Z. Zhang, Z.H. Tu, L.F. Li, L. Zhao, and D. Jin, Multi-necking in Tension of Titanium Alloy at Low Temperature, Chin. J. Low Temp. Phys., 1995, 17, p 238–241Google Scholar
  25. 25.
    Z. Zhang, Z.H. Tu, L.F. Li, L. Zhao, and D. Jin, Investigation of the Effect of Temperatures on Tensile Load Drops of Titanium Alloy, Acta Metall. Sin., 1997, 22, p 198–202Google Scholar
  26. 26.
    Y.J. Wu, T. Lan, and L. Zhou, Deformation Phenomenon of P/M Ti-5Al-2.5Sn(ELI) Alloy, Rare Met. Mater. Eng., 2005, 34, p 406–408Google Scholar
  27. 27.
    M.H. Huang, Research on Low Temperature Brittleness of Malleable Cast Iron, J. Kunming Univ. Sci. Technol., 1997, 6, p 135–137Google Scholar
  28. 28.
    A. Seeger, Dislocation and Mechanical Property of Crystals, Wiley, New York, 1957, p 243–250Google Scholar
  29. 29.
    Q.Y. Sun, X.P. Song, and H.C. Gu, Cyclic Deformation Behaviour of Commercially Pure Titanium at Cryogenic Temperature, Int. J. Fatigue, 2001, 23, p 187–191CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • C. G. Yao
    • 1
    • 2
  • H. J. Lv
    • 2
  • D. Q. Yi
    • 1
  • S. Meng
    • 2
  • L. R. Xiao
    • 1
  • B. Wang
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Aerospace Research Institute of Material and Processing TechnologyBeijingChina

Personalised recommendations