Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1714–1724 | Cite as

Mechanical Properties and Wear Behavior of AA5182/WC Nanocomposite Fabricated by Friction Stir Welding at Different Tool Traverse Speeds

  • Moslem Paidar
  • Ali Asgari
  • Olatunji Oladimeji Ojo
  • Abbas Saberi


Grain growth inhibition at the heat-affected zone, improved weld strength and superior tribological properties of welds are desirable attributes of modern manufacturing. With the focused on these attributes, tungsten carbide (WC) nanoparticles were employed as reinforcements for the friction stir welding of 5-mm-thick AA5182 aluminum alloy by varying tool traverse speeds. The microstructure, microhardness, ultimate tensile strength, fracture and wear behavior of the resultant WC-reinforced welds were investigated, while unreinforced AA5182 welds were employed as controls for the study. The result shows that the addition of WC nanoparticles causes substantial grain refinement within the weld nugget. A decrease in traverse speed caused additional particle fragmentation, improved hardness value and enhanced weld strength in the reinforced welds. Improved wear rate and friction coefficient of welds were attained at a reduced traverse speed of 100 mm/min in the WC-reinforced welds. This improvement is attributed to the effects of reduced grain size/grain fragmentation and homogeneous dispersion of WC nanoparticles within the WC-reinforced weld nugget.


AA5182/WC nanocomposite friction stir welding mechanical properties microstructural characteristics WC nanoparticles 


  1. 1.
    O.S. Salih, H. Ou, W. Sun, and D.G. McCartney, A Review of Friction Stir Welding of Aluminum Matrix Composites, Mater. Des., 2015, 86, p 61–71CrossRefGoogle Scholar
  2. 2.
    S.S. Mirjavadi, M. Alipour, S. Emamian, S. Kord, A.M.S. Hamouda, Praveennath G. Koppad, and R. Keshavamurthy, Influence of TiO2 Nanoparticles Incorporation To Friction Stir Welded 5083 Aluminum Alloy on the Microstructure, Mechanical Properties and Wear Resistance, J. Alloy. Compd., 2017, 712, p 795–803CrossRefGoogle Scholar
  3. 3.
    N. Yuvaraj, S. Aravindan, and Vipin, Fabrication of Al5083/B4C Surface Composite by Friction Stir Processing and Its Tribological Characterization, J. Mater. Res. Technol., 2015, 4(4), p 398–410CrossRefGoogle Scholar
  4. 4.
    I. Sudhakar, V. Madhu, G. Madhusudhan Reddy, and K. Srinivasa Rao, Enhancement of Wear and Ballistic Resistance of Armour Grade AA7075 Aluminum Alloy Using Friction Stir Processing, Def. Technol., 2015, 11, p 10–17CrossRefGoogle Scholar
  5. 5.
    R. Palanivel, I. Dinaharan, R.F. Laubscher, and J. Paulo Davim, Influence of Boron Nitride Nanoparticles on Microstructure and Wear Behavior of AA6082/TiB2 Hybrid Aluminum Composites Synthesized by Friction Stir Processing, Mater. Des., 2016, 106, p 195–204CrossRefGoogle Scholar
  6. 6.
    S. Sahraeinejad, H. Izadi, M. Haghshenas, and A.P. Gerlich, Fabrication of Metal Matrix Composites by Friction Stir Processing with Different Particles and Processing Parameters, Mater. Sci. Eng., A, 2014, 626, p 505–513CrossRefGoogle Scholar
  7. 7.
    S. Selvakumar, I. Dinaharan, R. Palanivel, and B.G. Babu, Characterization of Molybdenum Particles Reinforced Al6082 Aluminum Matrix Composites with Improved Ductility Produced Using Friction Stir Processing, Mater. Charact., 2017, 125, p 13–22CrossRefGoogle Scholar
  8. 8.
    S. Selvakumar, I. Dinaharan, R. Palanivel, and B. Ganesh Babu, Development of Stainless Steel Particulate Reinforced AA6082 Aluminium Matrix Composites with Enhanced Ductility Using Friction Stir Processing, Mater. Sci. Eng., A, 2017, 685, p 317–326CrossRefGoogle Scholar
  9. 9.
    M. Bodaghi and K. Dehghani, Friction Stir Welding of AA5052: The Effects of SiC Nano-Particles Addition, Int. J. Adv. Manuf. Technol., 2016, 88(9–12), p 2651–2660Google Scholar
  10. 10.
    M. Sarkari Khorrami, M. Kazeminezhad, and A.H. Kokabi, Thermal Stability of Aluminum After Friction Stir Processing with SiC Nanoparticles, Mater. Des., 2015, 80, p 41–50CrossRefGoogle Scholar
  11. 11.
    M. Paidar and M. Laali Sarab, Friction Stir Spot Welding of 2024-T3 Aluminum Alloy with SiC Nanoparticles, J. Mech. Sci. Technol., 2016, 30(1), p 365–370CrossRefGoogle Scholar
  12. 12.
    M. Mohammadi-pour, A. Khodabandeh, S. Mohammadi-pour, and M. Paidar, Microstructure and Mechanical Properties of Joints Welded by Friction-Stir Welding in Aluminum Alloy 7075-T6 Plates for Aerospace Application, Rare Met., 2016, Google Scholar
  13. 13.
    M. Paidar, A. Khodabandeh, H. Najafi, and A. Sabour Rouh-aghdam, An Investigation on Mechanical and Metallurgical Properties of 2024-T3 Aluminum Alloy Spot Friction Welds, Int. J. Adv. Manuf. Technol., 2015, 80(80), p 183–196CrossRefGoogle Scholar
  14. 14.
    A. Salemi Golezani, R. Vatankhah Barenji, A. Heidarzadeh, and H. Pouraliakbar, Elucidating of Tool Rotational Speed in Friction Stir Welding of 7020-T6 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2015, 81, p 1155–1164CrossRefGoogle Scholar
  15. 15.
    R. Akbari, S. Mirdamadi, A. Khodabandeh, and M. Paidar, A Study on Mechanical and Microstructural Properties of Dissimilar FSWed Joints of AA5251–AA5083 Plates, Int. J. Mater. Res., 2016, 107, p 752–761CrossRefGoogle Scholar
  16. 16.
    J.A. Al-Jarrah, S. Swalha, T.A. Mansour, M. Ibrahim, M. Al-Rashdan, and D.A. Al-Qahsi, Welding Equality and Mechanical Properties of Aluminum Alloys Joints Prepared by Friction Stir Welding, Mater. Des., 2014, 56, p 929–936CrossRefGoogle Scholar
  17. 17.
    J.J. Moses, I. Dinaharan, and S.J. Sekhar, Production and Characterization of Titanium Carbide Particulate Reinforced AA6061 Aluminum Alloy Composites Using Stir Casting, Kovove Mater., 2016, 54, p 257–267Google Scholar
  18. 18.
    A. Heidarzadeha, H. Pouraliakbar, S. Mahdavic, and M.R. Jandaghi, Ceramic Nanoparticles Addition in Pure Copper Plate: FSP Approach, Microstructure Evolution and Texture Study Using EBSD, Ceram. Int., 2018, 44, p 3128–3133CrossRefGoogle Scholar
  19. 19.
    H. Eftekharinia, A.A. Amadeh, A. Khodabandeh, and M. Paidar, Microstructure and Wear Behavior of AA6061/SiC Surface Composite Fabricated Via Friction Stir Processing with Different Pins and Passes, Rare Met., 2016, Google Scholar
  20. 20.
    A. Moradi Faradonbeh, M. Shamanian, H. Edris, M. Paidar, and Y. Bozkurt, Friction Stir Welding of Al-B4C Composite Fabricated by Accumulative Roll Bonding: Evaluation of Microstructure and Mechanical Behavior, J. Mater. Eng. Perform., 2018, 27(2), p 835–846CrossRefGoogle Scholar
  21. 21.
    A. Salemi Golezani, R. Vatankhah Barenji, A. Heidarzadeh, and H. Pouraliakbar, Elucidating of Tool Rotational Speed in Friction Stir Welding of 7020-T6 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2015, 81, p 1155–1164CrossRefGoogle Scholar
  22. 22.
    M. Farahmand Nikoo, H. Azizi, N. Parvin, and H. Yousefpour Naghibi, The Influence of Heat Treatment on Microstructure and Wear Properties of Friction Stir Welded AA6061-T6/Al2O3 Nanocomposite Joint at Four Different Traversing Speed, J. Manuf. Process., 2016, 22, p 90–98CrossRefGoogle Scholar
  23. 23.
    M. Navazani and K. Dehghani, Fabrication of Mg-ZrO2 Surface Layer Composites by Friction Stir Processing, J. Mater. Process. Technol., 2016, 229, p 439–449CrossRefGoogle Scholar
  24. 24.
    M. Keneshloo, M. Paidar, and M. Taheri, Role of SiC Ceramic Particles on the Physical and Mechanical Properties of Al-4%Cu Metal Matrix Composite Fabricated Via Mechanical Alloying, J. Compos. Mater., 2017, 51(9), p 1285–1298CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Moslem Paidar
    • 1
  • Ali Asgari
    • 1
  • Olatunji Oladimeji Ojo
    • 2
  • Abbas Saberi
    • 3
  1. 1.Department of Materials EngineeringIslamic Azad University, South Tehran BranchTehranIran
  2. 2.Department of Mechanical Engineering ScienceThe Federal University of Technology AkureAkureNigeria
  3. 3.Advanced Materials Research Center, Materials Engineering DepartmentNajafabad Branch, Islamic Azad UniversityNajafabadIran

Personalised recommendations