Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1854–1865 | Cite as

Effects of Different Surfactants on Structural, Tribological and Electrical Properties of Pulsed Electro-Codeposited Cu-ZrO2 Composite Coatings

Article
  • 45 Downloads

Abstract

Cu-ZrO2 composite coating was synthesized by pulse electrodeposition from an acidic sulfate electrolyte dispersed with nano-sized ZrO2 particles. Effects of different surfactants in different amounts on the codeposition and distribution of ZrO2 particles in the copper matrix, surface-mechanical (hardness and wear) and electrical (conductivity) properties of developed composite coatings have been thoroughly investigated. Sodium dodecyl sulfate (SDS), poly acrylic acid (PAA) and glucose have been added in the electrolyte in different concentrations as anionic, polymeric and nonionic surfactants. Obtained experimental results confirmed that addition of SDS up to 1 g/L improves the amount of codeposited ZrO2 particles in the copper matrix and surface-mechanical properties of the nanocomposite coatings. But, in case of PAA- and glucose-assisted coatings, highest amount of ZrO2 codeposition was observed in 0.5 g/L PAA and 20 g/L glucose-assisted coatings, which in turn affected the mechanical properties. Surface-mechanical properties were found to be affected by coating matrix morphology and crystallographic orientation along with embedded ZrO2 particle content. Electrical conductivity of all the deposits not only depends upon the codeposition of ZrO2 particles in the matrix but also on the microstructure and crystallographic orientation.

Keywords

conductivity copper electrodeposition surfactant wear 

Notes

Acknowledgments

Partial financial support of this work from the Council of Scientific & Industrial Research, India (Grant No. 22/0563/11/EMR-II), is gratefully acknowledged.

References

  1. 1.
    A. Gomes, I. Pereira, B. Fernández, and R. Pereiro, Electrodeposition of Metal Matrix Nanocomposites: Improvement of the Chemical Characterization Techniques, Advances in Nanocomposites: Synthesis, Characterization and Industrial Applications, B. Reddy, Ed., InTech, New York, 2011,Google Scholar
  2. 2.
    C.T.J. Low, R.G.A. Wills, and F.C. Walsh, Electrodeposition of Composite Coatings Containing Nanoparticles in a Metal Deposit, Surf. Coat. Technol., 2006, 201, p 371-383CrossRefGoogle Scholar
  3. 3.
    J.L. Stojak, J. Fransaer, and J.B. Talbot, Review of Electrocodeposition, Advances in Electrochemical Science and Engineering, 7th ed., R.C. Alkire and D.M. Kolb, Ed., Wiley-VCH-Verlag GmbH, Germany, 2001, p 193-224Google Scholar
  4. 4.
    J.P. Celis and J.R. Roos, Kinetics of the Deposition of Alumina Particles from Copper Sulfate Plating Baths, J. Electrochem. Soc., 1977, 124, p 1508-1511CrossRefGoogle Scholar
  5. 5.
    C. Buelens, J.P. Celis, and J.R. Roos, Electrochemical Aspects of the Codeposition of Gold and Copper with Inert Particles, J. Appl. Electrochem., 1983, 13, p 541-548CrossRefGoogle Scholar
  6. 6.
    H. Hayashi, S. Izumi, and I. Tari, Codeposition of α-Alumina Particles from Acid Copper Sulfate Bath, J. Electrochem. Soc., 1993, 140, p 362-365CrossRefGoogle Scholar
  7. 7.
    V.D. Stankovic and M. Gojo, Electrodeposited Composite Coatings of Copper with Inert, Semiconductive and Conductive Particles, Surf. Coat. Technol., 1996, 81, p 225-232CrossRefGoogle Scholar
  8. 8.
    Y.L. Wang, Y.Z. Wan, ShM Zhao, H.M. Tao, and X.H. Dong, Electrodeposition and Characterization of Al2O3-Cu(Sn), CaF2-Cu(Sn)and talc-Cu(Sn) Electrocomposite Coatings, Surf. Coat. Technol., 1998, 106, p 162-166CrossRefGoogle Scholar
  9. 9.
    Y.X. Gan, C.S. Wei, M. Lam, X. Wei, D. Lee, J.W. Kysar, and X. Chen, Deformation and Fracture Behavior of Electrocodeposited Alumina Nanoparticle/Copper Composite Films, J. Mater. Sci., 2007, 42, p 5256-5263CrossRefGoogle Scholar
  10. 10.
    V. Medeliene, R. Juskenas, M. Kurtinaitiene, and M. Jaskula, Copper Metal Matrix Composite Cu-TiO2 Electrodeposited in Aqueous Suspensions of the Nanometric Size Particles of Anatase and Rutile, Pol. J. Chem., 2004, 78, p 1305-1318Google Scholar
  11. 11.
    V. Mangam, K. Das, and S. Das, Structure and Properties of Electrocodeposited Cu-CeO2 Nanocomposite Thin Films, Mater. Chem. Phys., 2010, 120, p 631-635CrossRefGoogle Scholar
  12. 12.
    A. Ashok, H.S. Maharana, and A. Basu, Effect of Electro-Co-Deposition Parameters on Surface Mechanical Properties of Cu-TiO2 Composite Coating, Bull. Mater. Sci., 2015, 38, p 335-342CrossRefGoogle Scholar
  13. 13.
    H.S. Maharana and A. Basu, Evolution and Structure-Property Correlation of CTAB Assisted High Hardness Electrodeposited Cu-ZrO2 Nano-Cone Arrays, Surf. Coat. Technol., 2017, 310, p 148-156CrossRefGoogle Scholar
  14. 14.
    A.K. Pradhan and S. Das, Pulse-Reverse Electrodeposition of Cu-SiC Nanocomposite Coating: Effect of Concentration of SiC in the Electrolyte, J. Alloys Compd., 2014, 590, p 294-302CrossRefGoogle Scholar
  15. 15.
    S.W. Jiang, L. Yang, J.N. Pang, H. Lin, and Z.Q. Wang, Electrodeposition of Ni-Al2O3 Composite Coatings with Combined Addition of SDS and HPB Surfactants, Surf. Coat. Technol., 2016, 286, p 197-205CrossRefGoogle Scholar
  16. 16.
    A. Gomes, M.I. da Silva Pereira, M.H. Mendonca, and F.M. Costa, Zn-TiO2 Composite Films Prepared by Pulsed Electrodeposition, J. Solid State Electrochem., 2005, 9, p p190-196CrossRefGoogle Scholar
  17. 17.
    S.M. Lari Baghal, A.A. Madeh, M. Heydarzadeh Sohi, and S.M.M. Hadavi, The Effect of SDS Surfactant on Tensile Properties of Electrodeposited Ni-Co/SiC Nanocomposites, Mater. Sci. Eng., A, 2013, 559, p 583-590CrossRefGoogle Scholar
  18. 18.
    M. Eslami, H. Saghafian, F. Golestani-fard, and A. Robin, Effect of Electrodeposition Conditions on the Properties of Cu-Si3N4 Composite Coatings, Appl. Surf. Sci., 2014, 300, p 129-140CrossRefGoogle Scholar
  19. 19.
    G. Parida, D. Chaira, and A. Basu, Ni-ZrO2 Composite Coating by Electro-Co-Deposition, Trans. Indian Inst. Met., 2013, 66, p 5-11CrossRefGoogle Scholar
  20. 20.
    H. Gül, F. Kilic, S. Aslan, A. Alp, and H. Akbulut, Characteristics of Electro-Co-Deposited Ni-Al2O3 Nano-Particle Reinforced Metal Matrix Composite (MMC) Coatings, Wear, 2009, 267, p 976-990CrossRefGoogle Scholar
  21. 21.
    H. Gül, M. Uysal, H. Akbulut, and A. Alp, Effect of PC Electrodeposition on the Structure and Tribological Behavior of Ni-Al2O3 Nanocomposite Coatings, Surf. Coat. Technol., 2014, 258, p 1202-1211CrossRefGoogle Scholar
  22. 22.
    G. Parida, D. Chaira, M. Chopkar, and A. Basu, Synthesis and Characterization of Ni-TiO2 Composites by Electro-Co-Deposition, Surf. Coat. Technol., 2011, 205, p 4871-4879CrossRefGoogle Scholar
  23. 23.
    C.M. Praveen Kumar, T.V. Venkatesha, and K.G. Chandrappa, Effect of Surfactants on Codeposition of B4C Nanoparticles in Zn Matrix by Electrodeposition and Its Corrosion Behavior, Surf. Coat. Technol., 2012, 206, p 2249-2257CrossRefGoogle Scholar
  24. 24.
    F. Kilic, H. Gulb, S. Aslana, A. Alpa, and H. Akbuluta, Effect of CTAB Concentration in the Electrolyte on the Tribological Properties of Nanoparticle SiC Reinforced Ni Metal Matrix Composite (MMC) Coatings Produced by Electrodeposition, Colloids Surf. A Physicochem. Eng. Asp., 2013, 419, p 53-60CrossRefGoogle Scholar
  25. 25.
    R. Sen, S. Bhattacharya, S. Das, and K. Das, Effect of Surfactant on the Co-Electrodeposition of the Nano-Sized Ceria Particle in the Nickel Matrix, J. Alloys Compd., 2010, 489, p 650-658CrossRefGoogle Scholar
  26. 26.
    H. Li, Y. Wan, H. Liang, X. Li, Y. Huang, and F. He, Composite Electroplating of Cu-SiO2 Nano Particles on Carbon Fiber Reinforced Epoxy Composites, Appl. Surf. Sci., 2009, 256, p 1614-1616CrossRefGoogle Scholar
  27. 27.
    M.R. Vaezi, S.K. Sadrnezhaad, and L. Nikzad, Electrodeposition of Ni-SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics, Colloids and Surfaces A: Physicochem, Eng. Asp., 2008, 315, p 176-182CrossRefGoogle Scholar
  28. 28.
    X. Yu, J.P. Celis, M. De Bonte, and J.R. Roos, Ductility and Crystallographic Structure of Zinc Foils Electrodeposited from Acid Zinc Sulfate Solutions, J. Electrochem. Soc., 1994, 141, p 2698-2708CrossRefGoogle Scholar
  29. 29.
    X. Yang-tao, D. Yu-jie, Z. Wei, and X. Tian-dong, Microstructure and Texture Evolution of Electrodeposited Coatings of Nickel in the Industrial Electrolyte, Surf. Coat. Technol., 2017, 330, p 170-177CrossRefGoogle Scholar
  30. 30.
    Y. Yang, J. Han, X. Ning, W. Cao, W. Xu, and L. Guo, Controllable Morphology and Conductivity of Electrodeposited Cu2O Thin Film: Effect of Surfactants, ACS Appl. Mater. Interfaces., 2014, 6, p p22534-22543CrossRefGoogle Scholar
  31. 31.
    A.A. Aref, L. Xiong, N. Yan, A.M. Abdulkarem, and Y. Yu, Cu2O Nanorod Thin Films Prepared by CBD Method with CTAB: Substrate Effect, Deposition Mechanism and Photoelectrochemical Properties, Mater. Chem. Phys., 2011, 127, p 433-439CrossRefGoogle Scholar
  32. 32.
    H.S. Maharana and A. Basu, Surface-Mechanical and Oxidation Behavior of Electro-Co-Deposited Cu-Y2O3 Composite Coating, Surf. Coat. Technol., 2016, 304, p 348-358CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations