Advertisement

Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

  • Camilo S. Velasquez
  • Egnalda P. S. Pimenta
  • Vanessa F. C. Lins
Article
  • 91 Downloads

Abstract

This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

Keywords

coatings coatings and paints corrosion and wear inorganic steel 

Notes

Acknowledgments

The authors are grateful to the USIMINAS Industry, Centro de Microscopia da UFMG, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CMPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

References

  1. 1.
    V. Kuklik and J. Kudlacek, Hot-dip Galvanizing of Steel Structures, Butterworth-Heinemann, Boston, 2016Google Scholar
  2. 2.
    J.F. Van Eijnsbergen, Duplex Systems: Hot-Dip Galvanizing Plus Painting, Elsevier, Amsterdam, 1994Google Scholar
  3. 3.
    S. Adhikari, K.A. Unocic, Y. Zhai, G.S. Frankel, J. Zimmerman, and W. Fristad, Hexafluorozirconic Acid Based Surface Pretreatments: Characterization and Performance Assessment, Electrochim. Acta, 2011, 56(4), p 1912–1924CrossRefGoogle Scholar
  4. 4.
    A. Tiwari, L. Hihara, and J. Rawlins, Ed., Intelligent Coatings for Corrosion Control, Butterworth-Heinemann, Boston, 2015Google Scholar
  5. 5.
    T.S. Narayanan, Surface Pretreatment by Phosphate Conversion Coatings—A Review, Rev. Adv. Mater. Sci., 2005, 9(2), p 130–177Google Scholar
  6. 6.
    B. Tepe and B. Gunay, Evaluation of Pre-treatment Processes for HRS (Hot Rolled Steel) in Powder Coating, Prog. Org. Coat., 2008, 62(2), p 134–144CrossRefGoogle Scholar
  7. 7.
    C. Klingenberg and D. Jones, Low-Temperature, Phosphate-Free Conversion Coatings: A Cost-Effective, High-Performance, Environmentally Friendly Alternative to Iron Phosphate, Metal Finish., 2007, 105(9), p 28–30CrossRefGoogle Scholar
  8. 8.
    G. Gusmano, G. Montesperelli, M. Rapone, G. Padeletti, A. Cusmà, S. Kaciulis, A. Mezzi, and R. Di Maggio, Zirconia Primers for Corrosion Resistant Coatings, Surf. Coat. Technol., 2007, 201(12), p 5822–5828CrossRefGoogle Scholar
  9. 9.
    S. Verdier, N. Van der Laak, F. Dalard, J. Metson, and S. Delalande, An Electrochemical and SEM Study of the Mechanism of Formation, Morphology, and Composition of Titanium or Zirconium Fluoride-Based Coatings, Surf. Coat. Technol., 2006, 200(9), p 2955–2964CrossRefGoogle Scholar
  10. 10.
    A. Ghanbari and M.M. Attar, Corrosion Behavior of Zirconium Treated Mild Steel With and Without Organic Coating: A Comparative Study, Surf. Rev. Lett., 2014, 21(06), p 1450088CrossRefGoogle Scholar
  11. 11.
    D. Weng, P. Jokiel, A. Uebleis, and H. Boehni, Corrosion and Protection Characteristics of Zinc and Manganese Phosphate Coatings, Surf. Coat. Technol., 1997, 88(1–3), p 147–156CrossRefGoogle Scholar
  12. 12.
    J. Creus, H. Mazille, and H. Idrissi, Porosity Evaluation of Protective Coatings Onto Steel, Through Electrochemical Techniques, Surf. Coat. Technol., 2000, 130(2), p 224–232CrossRefGoogle Scholar
  13. 13.
    L. Kwiatkowski, Phosphate Coatings Porosity: Review of New Approaches, Surf. Eng., 2004, 20(4), p 292–298CrossRefGoogle Scholar
  14. 14.
    V.D.F.C. Lins, G.F. de Andrade Reis, C.R. de Araujo, and T. Matencio, Electrochemical Impedance Spectroscopy and Linear Polarization Applied to Evaluation of Porosity of Phosphate Conversion Coatings on Electrogalvanized Steels, Appl. Surf. Sci., 2006, 253(5), p 2875–2884CrossRefGoogle Scholar
  15. 15.
    GM 14872, General Motors Engineering Standards Materials and Processes Procedures Accelerated Corrosion Test—Method B (2010)Google Scholar
  16. 16.
    ISO 11474, Corrosion of Metals and Alloys: Corrosion Tests in Artificial Atmosphere—Accelerated Outdoor Test by Intermittent Spraying of Salt Solution (1993)Google Scholar
  17. 17.
    ASTM D1654-08, Standard Test Method for Evaluation Of Painted or Coated Specimens Subjected to Corrosive Environments, ASTM International, West Conshohocken, 2008Google Scholar
  18. 18.
    S. Maeda, Surface Chemistry of Galvanized Steel Sheets Relevant to Adhesion Performance, Prog. Org. Coat., 1996, 28(4), p 227–238CrossRefGoogle Scholar
  19. 19.
    R.M.V. Paranhos, V.F.C. Lins, A.A.M. Waldemar, and E.A. Alvarenga, Optimisation of Electrochemical Stripping of Galvannealed Interstitial Free Steels, Surf. Eng., 2011, 27, p 676–682CrossRefGoogle Scholar
  20. 20.
    E.A. Alvarenga and V.F.C. Lins, Atmospheric Corrosion Evaluation of Electrogalvanized, Hot-Dip Galvanized, and Galvannealed Interstitial Free Steels Using Accelerated Field and Cyclic Tests, Surf. Coat. Technol., 2016, 306, p 428–438CrossRefGoogle Scholar
  21. 21.
    F. Andreatta, A. Turco, I. De Graeve, H. Terryn, J.H.W. De Wit, and L. Fedrizzi, SKPFM and SEM Study of the Deposition Mechanism of Zr/Ti Based Pre-treatment on AA6016 Aluminum Alloy, Surf. Coat. Technol., 2007, 201(18), p 7668–7685CrossRefGoogle Scholar
  22. 22.
    J. Cerezo, I. Vandendael, R. Posner, K. Lill, J.H.W. de Wit, J.M.C. Mol, and H. Terryn, Initiation and Growth of Modified Zr-Based Conversion Coatings on Multi-Metal Surfaces, Surf. Coat. Technol., 2013, 236, p 284–289CrossRefGoogle Scholar
  23. 23.
    S. Feliu and M. Morcillo, The Reproducibility of Impedance Parameters Obtained for Painted Specimens, Prog. Org. Coat., 1995, 25(4), p 365–377CrossRefGoogle Scholar
  24. 24.
    F. Deflorian and L. Fedrizzi, Adhesion Characterization of Protective Organic Coatings by Electrochemical Impedance Spectroscopy, J. Adhes. Sci. Technol., 1999, 13(5), p 629–645CrossRefGoogle Scholar
  25. 25.
    B. Del Amo, L. Véleva, A.R. Di Sarli, and C.I. Elsner, Performance of Coated Steel Systems Exposed to Different Media: Part I. Painted Galvanized Steel, Prog. Org. Coat., 2004, 50(3), p 179–192Google Scholar
  26. 26.
    N. Tang, W.J. van Ooij, and G. Górecki, Comparative EIS Study of Pretreatment Performance in Coated Metals, Prog. Org. Coat., 1997, 30(4), p 255–263CrossRefGoogle Scholar
  27. 27.
    H.D.A. Ponte, A.M. Maul, and E.D.A. Alvarenga, Analysis of Electrochemical Porosity of Phosphatized Coatings on Galvanized Steel Substrate, Mater. Res., 2002, 5(4), p 439–446CrossRefGoogle Scholar
  28. 28.
    C.H.S.B. Teixeira, E.A. Alvarenga, W.L. Vasconcelos, and V.F.C. Lins, Effect of Porosity of Phosphate Coating on Corrosion Resistance of Galvanized and Phosphated Steels Part I: Measurement of Porosity of Phosphate, Mater. Corros., 2011, 62, p 771–777CrossRefGoogle Scholar
  29. 29.
    C.H.S.B. Teixeira, E.A. Alvarenga, W.L. Vasconcelos, and V.F.C. Lins, Effect of Porosity of Phosphate Coating on Corrosion Resistance of Galvanized and Phosphated Steels Part II: Evaluation of Corrosion Resistance, Mater. Corros., 2011, 62, p 853–860CrossRefGoogle Scholar
  30. 30.
    E. Ramanathan and S. Balasubramanian, Comparative Study on Polyester Epoxy Powder Coat and Amide Cured Epoxy Liquid Paint over Nano-Zirconia Treated Mild Steel, Prog. Org. Coat., 2016, 93, p 68–76CrossRefGoogle Scholar
  31. 31.
    V. Saarimaa, A. Markkula, K. Arstila, J. Manni, and J. Juhanoja, Effect of Hot Dip Galvanized Steel Surface Chemistry and Morphology on Titanium Hexafluoride Pretreatment, Adv. Mater. Phys. Chem., 2017, 7(02), p 28CrossRefGoogle Scholar
  32. 32.
    R.S. Razavi, Recent Researches in Corrosion Evaluation and Protection, InTech, Shanghai, 2012CrossRefGoogle Scholar
  33. 33.
    E. McCafferty, Introduction to Corrosion Science, Springer, New York, 2010CrossRefGoogle Scholar
  34. 34.
    M. Stratmann, K. Bohnenkamp, and H.J. Engell, An Electrochemical Study of Phase-Transitions in Rust Layers, Corros. Sci., 1983, 23, p 969–985CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Camilo S. Velasquez
    • 1
  • Egnalda P. S. Pimenta
    • 2
  • Vanessa F. C. Lins
    • 1
  1. 1.Chemical Engineering DepartmentUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.USIMINAS IndustryIpatingaBrazil

Personalised recommendations