Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 2018–2023 | Cite as

Ductile Tearing Resistance Indexing of Automotive Grade DP 590 Steel Sheets: EWF Testing Using DENT Specimens

  • Subhadra Sahoo
  • N. Padmapriya
  • Partha Sarathi De
  • P. C. Chakraborti
  • S. K. Ray
Article
  • 36 Downloads

Abstract

The essential work of fracture (EWF) method has been explored for indexing the ductile tearing resistance of DP 590 automotive grade dual-phase steel sheet both in longitudinal (L-T) and transverse (T-L) orientations. The simplest possible test and analysis procedures have been adopted. The EWF method is found to be eminently suitable for routine quality control and product development purposes for such materials. Areas for further research for improving the experimental strategy are highlighted. For the investigated steel sheet, the estimated tearing resistance is found to be distinctly higher for the L-T orientation compared to the T-L orientation; the reason thereof merits further investigation.

Keywords

CTOA CTOD EWF method DENT specimens dual-phase steel tearing resistance 

Notes

Acknowledgments

The authors thank Dr.Mahadev Shome, M/s Tata Steel, India, for kindly providing the test material. SKR wishes to thank Ministry of Steel, Government of India, for support during the course of the reported study.

References

  1. 1.
    B. Cotterell and J.K. Reddel, The Essential Work of Plane Stress Ductile Fracture, Int. J. Fract., 1977, 13(3), p 267–277Google Scholar
  2. 2.
    Y.W. Mai and B. Cotterell, On the Essential Work of Ductile Fracture in Polymers, Int. J. Fract., 1986, 32, p 102–105CrossRefGoogle Scholar
  3. 3.
    Y. Marchal and F. Delanny, Influence of Test Parameters on the Measurement of the Essential Work of Fracture of Zinc Sheets, Int. J. Fract., 1996, 80, p 295–310CrossRefGoogle Scholar
  4. 4.
    Y. Marchal, J.-F. Walhin, and F. Delannay, Statistical Procedure for Improving the Precision of the Measurement of the Essential Work of Fracture of Thin Sheets, Int. J. Fract., 1998, 87, p 189–199CrossRefGoogle Scholar
  5. 5.
    T. Pardoen, Y. Marchal, and F. Dellanay, Essential Work of Fracture Compared to Fracture Mechanics—Towards a Thickness Independent Plane Stress Toughness, Eng. Fract. Mech., 2002, 69, p 617–631CrossRefGoogle Scholar
  6. 6.
    B. Cotterell, T. Pardoen, and A.G. Atkin, Measuring Toughness and the Cohesive Stress–Displacement Relationship by the Essential Work of Fracture Concept, Eng. Fract. Mech., 2005, 72, p 827–848CrossRefGoogle Scholar
  7. 7.
    J.G. Williams and M. Rink, The Standardisation of the EWF Test, Eng. Fract. Mech., 2007, 74, p 1009–1017CrossRefGoogle Scholar
  8. 8.
    T. Báránya, T. Czigánya, and J. Karger-Kocsis, Application of the Essential Work of Fracture (EWF) Concept for Polymers, Related Blends and Composites: A Review, Prog. Polym. Sci., 2010, 35, p 1257–1287CrossRefGoogle Scholar
  9. 9.
    M. Rink, L. Andena, and C. Marano, The Essential Work of Fracture in Relation to J-Integral, Eng. Fract. Mech., 2014, 127, p 181–193CrossRefGoogle Scholar
  10. 10.
    F. Tuba, L. Oláh, and P. Nagy, The Role of Ultimate Elongation in the Determination of Valid Ligament Range of Essential Work of Fracture Tests, J. Mater. Sci., 2012, 47, p 2228–2233CrossRefGoogle Scholar
  11. 11.
    F. Hachez, A.G. Atkins, R.H. Dodds, and T. Pardoen, Micromechanics-Based Modelling of Ductile Tearing in Thin Plates, ECF15, 2004. www.structuralintegrity.eu/pdf/esis/Documents/…/15/Hachez%20F%20et%20al.pdf.
  12. 12.
    G. Lacroix, T. Pardoen, and P.J. Jacques, The Fracture Toughness of TRIP Assisted Multiphase Steels, Actamaterialia, 2008, 56, p 3900–3913Google Scholar
  13. 13.
    D. Gutiérrez, L.I. Pérez, A. Lara, D. Casellas, and J.M. Prado, Evaluation of Essential Work of Fracture in a Dual Phase High Strength Steel Sheet, Revista de Metalurgia, 2013, 49(1), p 45–54.  https://doi.org/10.3989/revmetalm.1213 CrossRefGoogle Scholar
  14. 14.
    M. Torrentallé Dot, High Strength Steel Fracture: Fracture Initiation Analysis by the Essential Work of Fracture Concept, Bachelor Thesis, UniversitatPolytèchnica de Catalunya, Manresa, Jan 2015Google Scholar
  15. 15.
    G. Martin, M. Veron, Y. Brechet, B. Chehab, R. Fourmentin, J.-D. Mithieux, S.K. Yerra, L. Delannay, and T. Pardoen, Characterization of the Hot Cracking Resistance Using the Essential Work of Fracture (EWF)—Application to Duplex Stainless Steels, REM R. Esc. Minas, OuroPreto, 2013, 66(2), p 145–151. www.scielo.br/pdf/rem/v66n2/v66n2a02.pdf
  16. 16.
    ASTM E2472, Standard Test Method for Determination of Resistance to Stable Crack Extension under Low-Constraint Conditions, ASTM International, West Conshohocken, PA, 2012Google Scholar
  17. 17.
    C.D. Wilson and Prabhu Mani, Plastic J-Integral Calculations Using the Load Separation Method for the Double Edge Notch Tension Specimen, Eng. Fract. Mech., 2008, 75, p 5177–5186CrossRefGoogle Scholar
  18. 18.
    F. Tuba, L. Oláh, and P. Nagy, On the Valid Ligament Range of Specimens for the Essential Work of Fracture Method: The Inconsequence of Stress Criteria, Eng. Fract. Mech., 2013, 99, p 349–355CrossRefGoogle Scholar
  19. 19.
    H. Tao, P.D. Zavattieri, L.G. Hector, Jr., and W. Tong, Mode I, Fracture at Spot Welds in Dual-Phase Steel: An Application of Reverse Digital Image Correlation, Exp. Mech., 2010, 50, p 1199–1212CrossRefGoogle Scholar
  20. 20.
    M. Faccoli, G. Cornacchia, M. Gelfi, A. Panvini, and R. Roberti, Notch Ductility of Steels for Automotive Components, Eng. Fract. Mech., 2014, 127, p 181–193CrossRefGoogle Scholar
  21. 21.
    C.F. Shih, Relationship Between the J-Integral and the Crack Opening Displacement for Stationary and Extending Cracks, J. Mech. Phys. Solids, 1981, 29, p 305–326CrossRefGoogle Scholar
  22. 22.
    T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press LLC, Boca Raton, 1995Google Scholar
  23. 23.
    H. Li, M.W. Fu, J. Lua, and H. Yang, Ductile Fracture: Experiments and Computations, Int. J. Plast., 2011, 27, p 147–180CrossRefGoogle Scholar
  24. 24.
    C.E. Turner, A Re-assessment of Ductile Tearing Resistance (Part I and II), Fracture Behaviour and Design of Materials and Structures, Proc. ECF 8, D. Firrao, Ed., Vol. II, 1990, p 933–949, 951–968Google Scholar
  25. 25.
    P. Anuschewski, W. Brocks, D. Hellmann, Characterisation of Ductile Tearing Resistance by the Energy Dissipation Rate: Effects of Material, Specimen Shape and Size, GKSS Report 2002/xxGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Subhadra Sahoo
    • 1
    • 2
  • N. Padmapriya
    • 1
    • 3
  • Partha Sarathi De
    • 1
  • P. C. Chakraborti
    • 1
  • S. K. Ray
    • 1
  1. 1.Metallurgical and Material Engineering DepartmentJadavpur UniversityKolkataIndia
  2. 2.Department of Metallurgical and Material EngineeringVeer Surendra Sai University of TechnologyBurla, SambalpurIndia
  3. 3.Department of Design and EngineeringBournemouth UniversityPooleUK

Personalised recommendations