Skip to main content
Log in

Ductile Tearing Resistance Indexing of Automotive Grade DP 590 Steel Sheets: EWF Testing Using DENT Specimens

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The essential work of fracture (EWF) method has been explored for indexing the ductile tearing resistance of DP 590 automotive grade dual-phase steel sheet both in longitudinal (L-T) and transverse (T-L) orientations. The simplest possible test and analysis procedures have been adopted. The EWF method is found to be eminently suitable for routine quality control and product development purposes for such materials. Areas for further research for improving the experimental strategy are highlighted. For the investigated steel sheet, the estimated tearing resistance is found to be distinctly higher for the L-T orientation compared to the T-L orientation; the reason thereof merits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Cotterell and J.K. Reddel, The Essential Work of Plane Stress Ductile Fracture, Int. J. Fract., 1977, 13(3), p 267–277

    Google Scholar 

  2. Y.W. Mai and B. Cotterell, On the Essential Work of Ductile Fracture in Polymers, Int. J. Fract., 1986, 32, p 102–105

    Article  Google Scholar 

  3. Y. Marchal and F. Delanny, Influence of Test Parameters on the Measurement of the Essential Work of Fracture of Zinc Sheets, Int. J. Fract., 1996, 80, p 295–310

    Article  Google Scholar 

  4. Y. Marchal, J.-F. Walhin, and F. Delannay, Statistical Procedure for Improving the Precision of the Measurement of the Essential Work of Fracture of Thin Sheets, Int. J. Fract., 1998, 87, p 189–199

    Article  Google Scholar 

  5. T. Pardoen, Y. Marchal, and F. Dellanay, Essential Work of Fracture Compared to Fracture Mechanics—Towards a Thickness Independent Plane Stress Toughness, Eng. Fract. Mech., 2002, 69, p 617–631

    Article  Google Scholar 

  6. B. Cotterell, T. Pardoen, and A.G. Atkin, Measuring Toughness and the Cohesive Stress–Displacement Relationship by the Essential Work of Fracture Concept, Eng. Fract. Mech., 2005, 72, p 827–848

    Article  Google Scholar 

  7. J.G. Williams and M. Rink, The Standardisation of the EWF Test, Eng. Fract. Mech., 2007, 74, p 1009–1017

    Article  Google Scholar 

  8. T. Báránya, T. Czigánya, and J. Karger-Kocsis, Application of the Essential Work of Fracture (EWF) Concept for Polymers, Related Blends and Composites: A Review, Prog. Polym. Sci., 2010, 35, p 1257–1287

    Article  Google Scholar 

  9. M. Rink, L. Andena, and C. Marano, The Essential Work of Fracture in Relation to J-Integral, Eng. Fract. Mech., 2014, 127, p 181–193

    Article  Google Scholar 

  10. F. Tuba, L. Oláh, and P. Nagy, The Role of Ultimate Elongation in the Determination of Valid Ligament Range of Essential Work of Fracture Tests, J. Mater. Sci., 2012, 47, p 2228–2233

    Article  Google Scholar 

  11. F. Hachez, A.G. Atkins, R.H. Dodds, and T. Pardoen, Micromechanics-Based Modelling of Ductile Tearing in Thin Plates, ECF15, 2004. www.structuralintegrity.eu/pdf/esis/Documents/…/15/Hachez%20F%20et%20al.pdf.

  12. G. Lacroix, T. Pardoen, and P.J. Jacques, The Fracture Toughness of TRIP Assisted Multiphase Steels, Actamaterialia, 2008, 56, p 3900–3913

    Google Scholar 

  13. D. Gutiérrez, L.I. Pérez, A. Lara, D. Casellas, and J.M. Prado, Evaluation of Essential Work of Fracture in a Dual Phase High Strength Steel Sheet, Revista de Metalurgia, 2013, 49(1), p 45–54. https://doi.org/10.3989/revmetalm.1213

    Article  Google Scholar 

  14. M. Torrentallé Dot, High Strength Steel Fracture: Fracture Initiation Analysis by the Essential Work of Fracture Concept, Bachelor Thesis, UniversitatPolytèchnica de Catalunya, Manresa, Jan 2015

  15. G. Martin, M. Veron, Y. Brechet, B. Chehab, R. Fourmentin, J.-D. Mithieux, S.K. Yerra, L. Delannay, and T. Pardoen, Characterization of the Hot Cracking Resistance Using the Essential Work of Fracture (EWF)—Application to Duplex Stainless Steels, REM R. Esc. Minas, OuroPreto, 2013, 66(2), p 145–151. www.scielo.br/pdf/rem/v66n2/v66n2a02.pdf

  16. ASTM E2472, Standard Test Method for Determination of Resistance to Stable Crack Extension under Low-Constraint Conditions, ASTM International, West Conshohocken, PA, 2012

    Google Scholar 

  17. C.D. Wilson and Prabhu Mani, Plastic J-Integral Calculations Using the Load Separation Method for the Double Edge Notch Tension Specimen, Eng. Fract. Mech., 2008, 75, p 5177–5186

    Article  Google Scholar 

  18. F. Tuba, L. Oláh, and P. Nagy, On the Valid Ligament Range of Specimens for the Essential Work of Fracture Method: The Inconsequence of Stress Criteria, Eng. Fract. Mech., 2013, 99, p 349–355

    Article  Google Scholar 

  19. H. Tao, P.D. Zavattieri, L.G. Hector, Jr., and W. Tong, Mode I, Fracture at Spot Welds in Dual-Phase Steel: An Application of Reverse Digital Image Correlation, Exp. Mech., 2010, 50, p 1199–1212

    Article  Google Scholar 

  20. M. Faccoli, G. Cornacchia, M. Gelfi, A. Panvini, and R. Roberti, Notch Ductility of Steels for Automotive Components, Eng. Fract. Mech., 2014, 127, p 181–193

    Article  Google Scholar 

  21. C.F. Shih, Relationship Between the J-Integral and the Crack Opening Displacement for Stationary and Extending Cracks, J. Mech. Phys. Solids, 1981, 29, p 305–326

    Article  Google Scholar 

  22. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press LLC, Boca Raton, 1995

    Google Scholar 

  23. H. Li, M.W. Fu, J. Lua, and H. Yang, Ductile Fracture: Experiments and Computations, Int. J. Plast., 2011, 27, p 147–180

    Article  Google Scholar 

  24. C.E. Turner, A Re-assessment of Ductile Tearing Resistance (Part I and II), Fracture Behaviour and Design of Materials and Structures, Proc. ECF 8, D. Firrao, Ed., Vol. II, 1990, p 933–949, 951–968

  25. P. Anuschewski, W. Brocks, D. Hellmann, Characterisation of Ductile Tearing Resistance by the Energy Dissipation Rate: Effects of Material, Specimen Shape and Size, GKSS Report 2002/xx

Download references

Acknowledgments

The authors thank Dr.Mahadev Shome, M/s Tata Steel, India, for kindly providing the test material. SKR wishes to thank Ministry of Steel, Government of India, for support during the course of the reported study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Chakraborti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Padmapriya, N., De, P.S. et al. Ductile Tearing Resistance Indexing of Automotive Grade DP 590 Steel Sheets: EWF Testing Using DENT Specimens. J. of Materi Eng and Perform 27, 2018–2023 (2018). https://doi.org/10.1007/s11665-018-3293-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3293-y

Keywords

Navigation