Advertisement

Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

  • Jinghua Jiang
  • Ting Yuan
  • Jun Shi
  • Lingling Zhang
  • Aibin Ma
  • Dan Song
Article
  • 65 Downloads

Abstract

Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of − 196 ~ 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

Keywords

ambient temperature Al-Si alloy equal-channel angular pressing (ECAP) impact toughness ultrafine-grained (UFG) 

Notes

Acknowledgments

The study was supported by the Fundamental Research Funds for the Central Universities (Grant No. HHU2016B10314), Six Major Talent Peaks Project of Jiangsu Province of China (Grant Number 2014-XCL-023),the Key Research and Development Project of Jiangsu Province of China (Grant No. BE2017148), Public Service Platform Program (Grant No. M201614) and Science & Technology Support Program in the industrial field (Grant No. H201615) of Suqian City of China.

References

  1. 1.
    Z.H. Chen and Z.T. Kang, Solid–Liquid Mixed Casting of Al-Si Alloy, J Cent. South. Univ. Technol., 2000, 7(3), p 133–135CrossRefGoogle Scholar
  2. 2.
    M.F. Ibrahim, E. Samuel, A.M. Samuel, A.M.A. Al-Ahmari, and F.H. Samue, Impact Toughness and Fractography of Al-Si-Cu-Mg Base Alloys, Mater. Des., 2011, 32, p 3900–3910CrossRefGoogle Scholar
  3. 3.
    T. Kobayashi, Strength and Fracture of Aluminum Alloys, Mater. Sci. Eng. A, 2000, 280, p 8–16CrossRefGoogle Scholar
  4. 4.
    J.H. Jiang, J. Shi, Y.H. Yao, A.B. Ma, D. Song, D.H. Yang, J.Q. Chen, and F.M. Lu, Dynamic Compression Properties of an Ultrafine-Grained Al-26 wt.% Si Alloy Fabricated by Equal-Channel Angular Pressing, J. Mater. Eng. Perform., 2015, 24(5), p 2016–2024CrossRefGoogle Scholar
  5. 5.
    A. Ma, K. Suzuki, Y. Nishida, N. Saito, I. Shigematsu, S. Ichinori, M. Takagi, H. Iwata, A. Watazu, and T. Imura, Impact Toughness of an Ultrafine-Grained Al-11 mass% Si Alloy Processed by Rotary-Die Equal-Channel Angular Pressing, Acta Mater., 2005, 53, p 211–220CrossRefGoogle Scholar
  6. 6.
    A. Ma, K. Suzuki, N. Saito, Y. Nishida, M. Takagi, I. Shigematsu, and H. Iwata, Impact Toughness of an Ingot Al-23 mass% Si Alloy Improved by Rotary-Die Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2005, 399, p 181–189CrossRefGoogle Scholar
  7. 7.
    R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51(7), p 881–981CrossRefGoogle Scholar
  8. 8.
    Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principles of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials, Scr. Mater., 1996, 35, p 143–146CrossRefGoogle Scholar
  9. 9.
    D.R. Fang, Y.Z. Tian, Q.Q. Duan, S.D. Wu, Z.F. Zhang, N.Q. Zhao, and J.J. Li, Effects of Equal Channel Angular Pressing on the Strength and Toughness of Al-Cu Alloy, J. Mater. Sci., 2011, 46(14), p 5002–5008CrossRefGoogle Scholar
  10. 10.
    K. Máthis, J. Gubicza, and N.H. Nam, Microstructure and Mechanical Behavior of AZ91 Mg Alloy Processed by Equal Channel Angular Pressing, J. Alloy. Compd., 2005, 394, p 194–199CrossRefGoogle Scholar
  11. 11.
    V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev, Grain Refinement and Properties of Pure Ti Processed by Warm ECAP and Cold Rolling, Mater. Sci. Eng. A, 2003, 343, p 43–50CrossRefGoogle Scholar
  12. 12.
    A. Ma, J. Jiang, N. Saito, I. Shigematsu, Y. Yuan, D. Yang, and Y. Nishida, Improving Both Strength and Ductility of a Mg Alloy Through a Large Number of ECAP Passes, Mater. Sci. Eng. A, 2009, 513–514, p 122–127CrossRefGoogle Scholar
  13. 13.
    C. Cui, A. Schulz, J. Epp, and H.W. Zoch, Deformation Behavior of Spray-Formed Hypereutectic Al-Si Alloys, J. Mater. Sci., 2010, 45(10), p p2798CrossRefGoogle Scholar
  14. 14.
    V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev, Influence of ECAP Routes on the Microstructure and Properties of Pure Ti, Mater. Sci. Eng. A, 2001, 299(1–2), p 59–67CrossRefGoogle Scholar
  15. 15.
    J. Jiang, A. Ma, F. Lu, N. Saito, A. Watazu, D. Song, P. Zhang, and Y. Nishida, Improving Corrosion Resistance of Al-11 mass% Si Alloy Through a Large Number of Equal-Channel-Angular-Pressing Passes, Mater. Corros., 2011, 62(9), p 848–852CrossRefGoogle Scholar
  16. 16.
    A.P. Zhilyaev, B.K. Kim, G.V. Nurislamova, M.D. Baró, J.A. Szpunar, and T.G. Langdon, Orientation Imaging Microscopy of Ultrafine-Grained Nickel, Scr. Mater., 2002, 46, p 575–580CrossRefGoogle Scholar
  17. 17.
    T. Kobayashi and M. Niinomi, Fracture Toughness and Fatigue Characteristics of Aluminum Casting Alloy, J. Jpn. Inst. Met., 1991, 41, p 398–405CrossRefGoogle Scholar
  18. 18.
    N.Q. Chinh, G. Vörös, P. Szommer, Z. Horita, and T.G. Langdon, Grain Boundary Sliding as a Significant Mechanism of Low Temperature Plastic Deformation in ECAP Aluminum, Mater. Sci. Forum, 2006, 503–504, p 1001–1006CrossRefGoogle Scholar
  19. 19.
    M. Kawasaki and T.G. Langdon, The Significance of Grain Boundary Sliding in the Superplastic Zn–22% Al Alloy Processed by ECAP, J. Mater. Sci., 2013, 48(13), p 4730–4741CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Jinghua Jiang
    • 1
  • Ting Yuan
    • 1
  • Jun Shi
    • 1
  • Lingling Zhang
    • 1
  • Aibin Ma
    • 1
    • 2
  • Dan Song
    • 1
    • 2
  1. 1.College of Mechanics and MaterialsHohai UniversityNanjingChina
  2. 2.Suqian InstituteHohai UniversitySuqianChina

Personalised recommendations