Advertisement

A Comparative Study of the Microstructure, Mechanical Properties and Corrosion Resistance of Ni- or Fe- Based Composite Coatings by Laser Cladding

  • M. Q. Wan
  • J. Shi
  • L. Lei
  • Z. Y. Cui
  • H. L. Wang
  • X. Wang
Article

Abstract

Ni- and Fe-based composite coatings were laser cladded on 40Cr steel to improve the surface mechanical property and corrosion resistance, respectively. The microstructure and phase composition were analyzed by x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) equipped with an energy-dispersive spectrometer (EDS). The micro-hardness, tribological properties and electrochemical corrosion behavior of the coatings were evaluated. The results show that the thickness of both the coatings is around 0.7 mm, the Ni-based coating is mainly composed of γ-(Ni, Fe), FeNi3, Ni31Si12, Ni3B, CrB and Cr7C3, and the Fe-based coating is mainly composed of austenite and (Fe, Cr)7C3. Micro-hardness of the Ni-based composite coating is about 960 HV0.3, much higher than that of Fe-based coating (357.4 HV0.3) and the 40Cr substrate (251 HV0.3). Meanwhile, the Ni-based composite coating possesses better wear resistance than the Fe-based coating validated by the worn appearance and the wear loss. Electrochemical results suggested that Ni-based coating exhibited better corrosion resistance than the Fe-based coating. The 40Cr substrate could be well protected by the Ni-based coating.

Keywords

corrosion behavior laser cladding Ni- and Fe-based composite coatings tribological properties 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 41406092), Qingdao Postdoctoral Science Foundation (No. 82214354), Qingdao Science and Technology Foundation for Youths (No. 14-2-4-113-jch), and Fundamental Research Funds for the Central Universities (No. 201413057).

References

  1. 1.
    H.X. Liu, Q. Xu, C. Wang, and X. Zhang, Corrosion and Wear Behavior of Ni60CuMoW Coatings Fabricated by Combination of Laser Cladding and Mechanical Vibration Processing, J. Alloys Compd., 2015, 621, p 357–363CrossRefGoogle Scholar
  2. 2.
    H.M. Wang and G. Duan, Wear and Corrosion Behavior of Laser Clad Cr3Si Reinforced Intermetallic Composite Coatings, Intermetallics, 2003, 11(8), p 755–762CrossRefGoogle Scholar
  3. 3.
    X.C. Zhang, B.S. Xu, S.T. Tu, F.Z. Xuan, H.D. Wang, and Y.X. Wu, Effect of Spraying Power on the Microstructure and Mechanical Properties of Supersonic Plasma-Sprayed Ni-Based Alloy Coatings, Appl. Surf. Sci., 2008, 254(20), p 6318–6326CrossRefGoogle Scholar
  4. 4.
    B. Bouchaud, J. Balmain, G. Bonnet, and F. Pedraza, Optimizing Structural and Compositional Properties of Electrodeposited Ceria Coatings for Enhanced Oxidation Resistance of a Nickel-Based Superalloy, Appl. Surf. Sci., 2013, 268(3), p 218–224CrossRefGoogle Scholar
  5. 5.
    H.X. Li, Y.Y. Qi, Z.D. Li, Z.G. Ji, and X. Wu, ZnO Photoanodes Coated with Ni-Based Nanostructured Electrocatalyst for Water Oxidation, J. Alloys Compd., 2015, 661, p 201–205CrossRefGoogle Scholar
  6. 6.
    L. Ding, S.S. Hu, X. Quan, and J.Q. Shen, Effect of Mo and Nano-Nd2O3 on the Microstructure and Wear Resistance of Laser Cladding Ni-Based Alloy Coatings, Appl. Phys. A, 2016, 122(4), p 1–7CrossRefGoogle Scholar
  7. 7.
    E.L. Chen, K.M. Zhang, and J.X. Zou, Laser Cladding of a Mg Based Mg-Gd-Y-Zr Alloy with Al-Si Powders, Appl. Surf. Sci., 2016, 367, p 11–18CrossRefGoogle Scholar
  8. 8.
    F.X. Huang, Z.H. Jiang, X.M. Liu, J.S. Lian, and L. Chen, Microstructure and Properties of Thin Wall by Laser Cladding Forming, J. Mater. Process. Technol., 2009, 209(11), p 4970–4976CrossRefGoogle Scholar
  9. 9.
    T.M. Yue, H. Xie, X. Lin, H.O. Yang, and G.H. Meng, Solidification Behaviour in Laser Cladding of AlCoCrCuFeNi High-Entropy Alloy on Magnesium Substrates, J. Alloys Compd., 2014, 587, p 588–593CrossRefGoogle Scholar
  10. 10.
    R. Subramanian, S. Sircar, and J. Mazumder, Laser Cladding of Zirconium on Magnesium for Improved Corrosion Properties, J. Mater. Sci., 1991, 26(4), p 951–956CrossRefGoogle Scholar
  11. 11.
    P.F. Mendez, N. Barnes, K. Bell, S.D. Borle, S.S. Gajapathi, S.D. Guest, H. Izadi, A.K. Gol, and G. Wood, Welding Processes for Wear Resistant Overlays, J. Manuf. Process., 2014, 16(1), p 4–25CrossRefGoogle Scholar
  12. 12.
    D.Z. Wang, Q.W. Hu, and X.Y. Zeng, Influences of Parameters on Microstructures and Mechanical Properties of Cr13Ni5Si2 Based Composite Coating by Laser-Induction Hybrid Cladding, Surf. Coat. Technol., 2015, 280, p 359–369CrossRefGoogle Scholar
  13. 13.
    Y. Lu, G. Lu, F. Liu, Z. Chen, and K. Tang, Phase-Field Study on the Pre-precipitated Phase of Ordered Intermetallic Compounds in Binary and Ternary Ni-Al Base Alloys, J. Alloys Compd., 2015, 637, p 149–154CrossRefGoogle Scholar
  14. 14.
    K. Liu, Y.J. Li, and J. Wang, In-situ Reactive Fabrication and Effect of Phosphorus on Microstructure Evolution of Ni/Ni-Al Intermetallic Composite Coating by Laser Cladding, Mater. Design, 2016, 105, p 171–178CrossRefGoogle Scholar
  15. 15.
    H.H. Sun, M.H. Guo, F.L. Meng, and A.G. Liu, Studies on Hardfaced Overlay of Diamond Grits Reinforced Ni-Based Alloy Fabricated by Laser Cladding, T. Indian I. Metals, 2016, 69(7), p 1369–1376CrossRefGoogle Scholar
  16. 16.
    G.D. Río, M.A. Garrido, J.E. Fernández, M. Cadenas, and J. Rodríguez, Influence of the Deposition Techniques on the Mechanical Properties and Microstructure of NiCrBSi Coatings, J. Mater. Process. Technol., 2008, 204(1–3), p 304–312Google Scholar
  17. 17.
    L.X. Cai, H.M. Wang, and C.M. Wang, Corrosion Resistance of Laser Clad Cr-Alloyed Ni2Si/NiSi Intermetallic Coatings, Surf. Coat. Technol., 2003, 176(1), p 294–299Google Scholar
  18. 18.
    Z.K. Weng, A.H. Wang, X.H. Wu, Y.Y. Wang, and Z.X. Yang, Wear Resistance of Diode Laser-Clad Ni/WC Composite Coatings at Different Temperatures, Surf. Coat. Technol., 2016, 304, p 283–292CrossRefGoogle Scholar
  19. 19.
    J. Nurminen, J. Näkki, and P. Vuoristo, Microstructure and Properties of Hard and Wear Resistant MMC Coatings Deposited by Laser Cladding, Int. J. Refract. Met. Hard Mater., 2009, 27(2), p 472–478CrossRefGoogle Scholar
  20. 20.
    L. Venkatesh, I. Samajdar, M. Tak, R.D. Doherty, R.C. Gundakaram, K.S. Prasad, and S.V. Joshi, Microstructure and Phase Evolution in Laser Clad Chromium Carbide-NiCrMoNb, Appl. Surf. Sci., 2015, 357, p 2391–2401CrossRefGoogle Scholar
  21. 21.
    D.Y. Lou, D. Liu, C.L. He, P. Bennett, L. Chen, Q.B. Yang, E. Fearon, and G. Dearden, Effect of Cr/C Ratio on Microstructure and Corrosion Performance of Cr3C2-NiCr Composite Fabricated by Laser Processing, J. Mater. Eng. Perform., 2016, 25(1), p 1–8CrossRefGoogle Scholar
  22. 22.
    D. Deschuyteneer, F. Petit, M. Gonon, and F. Cambier, Processing and Characterization of Laser Clad NiCrBSi/WC Composite Coatings—Influence of Microstructure on Hardness and Wear, Surf. Coat. Technol., 2015, 283, p 162–171CrossRefGoogle Scholar
  23. 23.
    F. Arias-González, J.D. Val, R. Comesaña, J. Penide, F. Lusquiños, F. Quintero, A. Riveiro, M. Boutinguiza, and J. Pou, Fiber Laser Cladding of Nickel-Based Alloy on Cast Iron, Appl. Surf. Sci., 2016, 374, p 197–205CrossRefGoogle Scholar
  24. 24.
    A.S. Khanna, S. Kumari, S. Kanungo, and A. Gasser, Hard Coatings Based on Thermal Spray and Laser Cladding, Int. J. Refract. Met. Hard Mater., 2009, 27(2), p 485–491CrossRefGoogle Scholar
  25. 25.
    S. Katakam, S. Santhanakrishnan, and N.B. Dahotre, Fe-Based Amorphous Coatings on AISI, 4130 Structural Steel for Corrosion Resistance, JOM, 2012, 64(6), p 709–715CrossRefGoogle Scholar
  26. 26.
    S.D. Sun, D. Fabijanic, A. Ghaderi, M. Leary, J. Toton, S. Sun, M. Brandt, and M. Easton, Microstructure and Hardness Characterisation of Laser Coatings Produced with a Mixture of AISI, 420 Stainless Steel and Fe-C-Cr-Nb-B-Mo Steel Alloy Powders, Surf. Coat. Tech., 2016, 296, p 76–87CrossRefGoogle Scholar
  27. 27.
    M. Doubenskaia, A.K. Gilmutdinov, and K.Y. Nagulin, Laser Cladding of Metal Matrix Composites Reinforced by Cermet Inclusions for Dry Friction Application at Ambient and Elevated Temperatures, Surf. Coat. Tech., 2015, 276(3), p 696–703CrossRefGoogle Scholar
  28. 28.
    X.Z. Li, Z.D. Liu, H.C. Li, Y.T. Wang, and B. Li, Investigations on the Behavior of Laser Cladding Ni-Cr-Mo Alloy Coating on TP347H Stainless Steel Tube in HCl Rich Environment, Surf. Coat. Tech., 2013, 232(10), p 627–639CrossRefGoogle Scholar
  29. 29.
    G.J. Li, J. Li, and X. Luo, Effects of High Temperature Treatment on Microstructure and Mechanical propeRties of Laser-Clad NiCrBSi/WC Coatings on Titanium Alloy Substrate, Mater. Charact., 2014, 98, p 83–92CrossRefGoogle Scholar
  30. 30.
    J.L. Chen, J. Li, R. Song, L.L. Bai, J.Z. Shao, and C.C. Qu, Effect of the Scanning Speed on Microstructural Evolution and Wear Behaviors of Laser Cladding NiCrBSi Composite Coatings, Opt. Laser Technol., 2015, 72, p 86–89CrossRefGoogle Scholar
  31. 31.
    X.B. Liu and H.M. Wang, Modification of Tribology and High-Temperature behAvior of Ti-48Al-2Cr-2Nb Intermetallic Alloy by Laser Cladding, Appl. Surf. Sci., 2006, 252(16), p 5735–5744CrossRefGoogle Scholar
  32. 32.
    R.J. Klein, D.A. Fischer, and J.L. Lenhart, Thermal and Mechanical Aging of Self-Assembled Monolayers as Studies by Near X-ray Absorption Fine Structure, Langmuir, 2011, 27(20), p 12423–12433CrossRefGoogle Scholar
  33. 33.
    G. Chakraborty, C.R. Das, S.K. Albert, A.K. Bhaduri, S. Murugesan, and A. Dasgupta, Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy, J. Mater. Eng. Perform., 2016, 25(4), p 1663–1672CrossRefGoogle Scholar
  34. 34.
    F. Weng, H.J. Yu, C.Z. Chen, J.L. Liu, L.J. Zhao, J.J. Dai, and Z.H. Zhao, Effect of Process Parameters on the Microstructure Evolution and Wear Property of the Laser Cladding Coatings on Ti-6Al-4V Alloy, J. Alloys Compd., 2017, 692, p 989–996CrossRefGoogle Scholar
  35. 35.
    H. Chen, G.Q. Gou, M.J. Tu, and Y. Liu, Research on the Friction and Wear Behavior at Elevated Temperature of Plasma-Sprayed Nanostructured WC-Co Coatings, J. Mater. Eng. Perform., 2010, 19(1), p 1–6CrossRefGoogle Scholar
  36. 36.
    L. Lei, J. Shi, X. Wang, D. Liu, and H.G. Xu, Microstructure and Electrochemical Behavior of Cerium Conversion Coating Modified with Silane Agent on magnesium Substrates, Appl. Surf. Sci., 2016, 376, p 161–171CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringOcean University of ChinaQingdaoChina

Personalised recommendations