Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1673–1684 | Cite as

Friction Stir Welding of Low-Carbon AISI 1006 Steel: Room and High-Temperature Mechanical Properties

  • Vasanth C. Shunmugasamy
  • Bilal Mansoor
  • Georges Ayoub
  • Ramsey Hamade
Article
  • 149 Downloads

Abstract

Friction stir welding (FSW) is an ecologically benign solid-state joining process. In this work, FSW of low-carbon AISI 1006 steel was carried out to study the microstructure and mechanical properties of the resulting joints at both room temperature (RT) and 200 °C. In the parameter space investigated here, a rotational tool speed and translation feed combination of 1200 rpm and 60 mm/min produced a defect-free weld with balanced mechanical properties and a superior Vickers microhardness profile compared to all other conditions and to base metal (BM). At faster translation feeds (100 and 150 mm/min), wormhole defects were observed in the weld microstructure and were attributed to higher strain rate experienced by the weld zone. Under tensile loading, welded material exhibited yield strength that was up to 86 and 91% of the BM at RT and 200 °C, respectively. On the other hand, tensile strength of welded material was nearly similar to that of the base metal at both RT and 200 °C. However, at both temperatures the tensile ductility of the welded joints was observed to be significantly lower than the BM. Annealing of the 1200 rpm and 60 mm/min FSW specimen resulted in tensile strength of 102% compared to base material and 47% increase in the strain at failure compared to the as-welded specimen. The Charpy impact values revealed up to 62 and 53% increase in the specific impact energy for the 1200 rpm and 60 mm/min welded joints as compared with the BM.

Keywords

friction stir welding low-carbon steel mechanical properties microstructure 

Notes

Acknowledgments

This work was made possible by a National Priorities Research Program grant from the Qatar National Research Fund (a member of The Qatar Foundation), under Grant Number NPRP 4-1063-2-397. The statements made herein are solely the responsibility of the authors.

References

  1. 1.
    R.S. Mishra, P.S. De, and N. Kumar, Introduction, Friction Stir Welding and Processing: Science and Engineering, Springer, Cham, 2014, p 1–11Google Scholar
  2. 2.
    L.E. Murr, A Review of FSW Research on Dissimilar Metal and Alloy Systems, J. Mater. Eng. Perform., 2010, 19(8), p 1071–1089CrossRefGoogle Scholar
  3. 3.
    A. Arici and T. Sinmazçelýk, Effects of Double Passes of the Tool on Friction Stir Welding of Polyethylene, J. Mater. Sci., 2005, 40(12), p 3313–3316CrossRefGoogle Scholar
  4. 4.
    P. Cavaliere, E. Cerri, L. Marzoli, and J. Dos Santos, Friction Stir Welding of Ceramic Particle Reinforced Aluminium Based Metal Matrix Composites, Appl. Compos. Mater., 2004, 11(4), p 247–258CrossRefGoogle Scholar
  5. 5.
    T. Prater, Friction Stir Welding of Metal Matrix Composites for use in Aerospace Structures, Acta Astronaut., 2014, 93, p 366–373CrossRefGoogle Scholar
  6. 6.
    R.S. Mishra, P.S. De, and N. Kumar, FSW of Aluminum Alloys, Friction Stir Welding and Processing: Science and Engineering, Springer, Cham, 2014, p 109–148Google Scholar
  7. 7.
    M. Sivashanmugam, S. Ravikumar, T. Kumar, V. SeshagiriRao, and D. Muruganandam, A Review on Friction Stir Welding for Aluminium Alloys, Front. Automob. Mech. Eng. (FAME), 2010, 25-27, p 216–221CrossRefGoogle Scholar
  8. 8.
    K.-T. Huang, T.-S. Lui, and L.-H. Chen, Effect of Microstructural Feature on the Tensile Properties and Vibration Fracture Resistance of Friction Stirred 5083 Alloy, J. Alloys Compd., 2011, 509(27), p 7466–7472CrossRefGoogle Scholar
  9. 9.
    A. Dorbane, G. Ayoub, B. Mansoor, R.F. Hamade, and A. Imad, Effect of Temperature on Microstructure and Fracture Mechanisms in Friction Stir Welded Al6061 Joints, J. Mater. Eng. Perform., 2017, 26(6), p 2542–2554CrossRefGoogle Scholar
  10. 10.
    G. Çam and S. Mistikoglu, Recent Developments in Friction Stir Welding of Al-alloys, J. Mater. Eng. Perform., 2014, 23(6), p 1936–1953CrossRefGoogle Scholar
  11. 11.
    R.S. Mishra, P.S. De, and N. Kumar, Friction Stir Welding of Magnesium Alloys, Friction Stir Welding and Processing: Science and Engineering, Springer, Cham, 2014, p 149–187Google Scholar
  12. 12.
    A. Dorbane, G. Ayoub, B. Mansoor, R.F. Hamade, G. Kridli, R. Shabadi, and A. Imad, Microstructural Observations and Tensile Fracture Behavior of FSW Twin Roll Cast AZ31 Mg Sheets, Mater. Sci. Eng. A, 2016, 649, p 190–200CrossRefGoogle Scholar
  13. 13.
    M.J. Russell, C. Blignault, N.L. Horrex, and C.S. Wiesner, Recent Developments in the Friction Stir Welding of Titanium Alloys, Weld. World, 2013, 52(9), p 12–15Google Scholar
  14. 14.
    R.S. Mishra, P.S. De, and N. Kumar, Friction Stir Welding of High Temperature Alloys, Friction Stir Welding and Processing: Science and Engineering, Springer, Cham, 2014, p 189–235Google Scholar
  15. 15.
    R.S. Mishra, P.S. De, and N. Kumar, Dissimilar Metal Friction Stir Welding, Friction Stir Welding and Processing: Science and Engineering, Springer, Cham, 2014, p 237–258Google Scholar
  16. 16.
    L. Liu, D. Ren, and F. Liu, A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys, Materials, 2014, 7(5), p 3735–3757CrossRefGoogle Scholar
  17. 17.
    A. Dorbane, B. Mansoor, G. Ayoub, V.C. Shunmugasamy, and A. Imad, Mechanical, Microstructural and Fracture Properties of Dissimilar Welds Produced by Friction Stir Welding of AZ31B and Al6061, Mater. Sci. Eng. A, 2016, 651, p 720–733CrossRefGoogle Scholar
  18. 18.
    H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, and K. Nogi, Friction Stir Welding of Carbon Steels, Mater. Sci. Eng. A, 2006, 429(1-2), p 50–57CrossRefGoogle Scholar
  19. 19.
    Y.S. Sato, H. Yamanoi, H. Kokawa, and T. Furuhara, Microstructural Evolution of Ultrahigh Carbon Steel During Friction Stir Welding, Scr. Mater., 2007, 57(6), p 557–560CrossRefGoogle Scholar
  20. 20.
    M. Ghosh, K. Kumar, and R.S. Mishra, Friction Stir Lap Welded Advanced High Strength Steels: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2011, 528(28), p 8111–8119CrossRefGoogle Scholar
  21. 21.
    R. Ueji, H. Fujii, L. Cui, A. Nishioka, K. Kunishige, and K. Nogi, Friction Stir Welding of Ultrafine Grained Plain Low-Carbon Steel Formed by the Martensite Process, Mater. Sci. Eng. A, 2006, 423(1-2), p 324–330CrossRefGoogle Scholar
  22. 22.
    R. Nandan, G.G. Roy, T.J. Lienert, and T. Debroy, Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel, Acta Mater., 2007, 55(3), p 883–895CrossRefGoogle Scholar
  23. 23.
    A. De, H.K.D.H. Bhadeshia, and T. DebRoy, Friction Stir Welding of Mild Steel—Tool Durability and Steel Microstructure, Mater. Sci. Technol., 2014, 30(2014), p 1050–1056CrossRefGoogle Scholar
  24. 24.
    R. Ramesh, I. Dinaharan, R. Kumar, and E.T. Akinlabi, Microstructure and Mechanical Characterization of Friction Stir Welded High Strength Low Alloy Steels, Mater. Sci. Eng. A, 2017, 687, p 39–46CrossRefGoogle Scholar
  25. 25.
    A. Toumpis, A. Galloway, L. Molter, and H. Polezhayeva, Systematic Investigation of the Fatigue Performance of a Friction Stir Welded Low Alloy Steel, Mater. Des., 2015, 80, p 116–128CrossRefGoogle Scholar
  26. 26.
    H. Li, S. Yang, S. Zhang, B. Zhang, Z. Jiang, H. Feng, P. Han, and J. Li, Microstructure Evolution and Mechanical Properties of Friction Stir Welding Super-Austenitic Stainless Steel S32654, Mater. Des., 2017, 118, p 207–217CrossRefGoogle Scholar
  27. 27.
    S. Karami, H. Jafarian, A.R. Eivani, and S. Kheirandish, Engineering Tensile Properties by Controlling Welding Parameters and Microstructure in a Mild Steel Processed by Friction Stir Welding, Mater. Sci. Eng. A, 2016, 670, p 68–74CrossRefGoogle Scholar
  28. 28.
    L. Cui, H. Fujii, N. Tsuji, and K. Nogi, Friction Stir Welding of a High Carbon Steel, Scr. Mater., 2007, 56(7), p 637–640CrossRefGoogle Scholar
  29. 29.
    Y.D. Chung, H. Fujii, R. Ueji, and N. Tsuji, Friction Stir Welding of High Carbon Steel with Excellent Toughness and Ductility, Scr. Mater., 2010, 63(2), p 223–226CrossRefGoogle Scholar
  30. 30.
    T.J. Lienert, W.L. Stellwag, Jr., B.B. Grimmett, and R.W. Warke, Friction Stir Welding Studies on Mild Steel, Weld. J., 2003, 81(1), p 1–9CrossRefGoogle Scholar
  31. 31.
    A.K. Lakshminarayanan, V. Balasubramanian, and M. Salahuddin, Microstructure, Tensile and Impact Toughness Properties of Friction Stir Welded Mild Steel, J. Iron. Steel Res. Int., 2010, 17(10), p 68–74CrossRefGoogle Scholar
  32. 32.
    W.J. Arbegast, Application of friction stir welding and related technologies, Friction Stir Welding and Processing, R.S. Mishra and M.W. Mahoney, Ed., ASM International, Materials Park, 2007, p 273–308Google Scholar
  33. 33.
    M. Mehta, A. Arora, A. De, and T. DebRoy, Tool Geometry for Friction Stir Welding—Optimum Shoulder Diameter, Metall. Mater. Trans. A, 2011, 42(9), p 2716–2722CrossRefGoogle Scholar
  34. 34.
    Y. Morisada, T. Imaizumi, H. Fujii, M. Matsushita, and R. Ikeda, Three-Dimensional Visualization of Material Flow During Friction Stir Welding of Steel and Aluminum, J. Mater. Eng. Perform., 2014, 23(11), p 4143–4147CrossRefGoogle Scholar
  35. 35.
    A.N. Albakri, B. Mansoor, H. Nassar, and M.K. Khraisheh, Thermo-mechanical and Metallurgical Aspects in Friction Stir Processing of AZ31 Mg Alloy—A Numerical and Experimental Investigation, J. Mater. Process. Technol., 2013, 213(2), p 279–290CrossRefGoogle Scholar
  36. 36.
    A. Arora, Z. Zhang, A. De, and T. DebRoy, Strains and Strain Rates During Friction Stir Welding, Scr. Mater., 2009, 61(9), p 863–866CrossRefGoogle Scholar
  37. 37.
    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50(1-2), p 1–78CrossRefGoogle Scholar
  38. 38.
    K. Kumar and S.V. Kailas, The Role of Friction Stir Welding Tool on Material Flow and Weld Formation, Mater. Sci. Eng. A, 2008, 485(1), p 367–374CrossRefGoogle Scholar
  39. 39.
    T.H. Courtney, Mechanical Behavior of Materials, McGraw-Hill, New York, 1990Google Scholar
  40. 40.
    K.E. Hughes, K.D. Nair, and C.M. Sellars, Temperature and Flow Stress During the Hot Extrusion of Steel, Met. Technol., 1974, 1(1), p 161–169CrossRefGoogle Scholar
  41. 41.
    M. Ghosh, K. Kumar, and R.S. Mishra, Analysis of Microstructural Evolution During Friction Stir Welding of Ultrahigh-Strength Steel, Scr. Mater., 2010, 63(8), p 851–854CrossRefGoogle Scholar
  42. 42.
    R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53(6), p 980–1023CrossRefGoogle Scholar
  43. 43.
    H.F. Lan, L.X. Du, and R.D.K. Misra, Effect of Microstructural Constituents on Strength–Toughness Combination in a Low Carbon Bainitic Steel, Mater. Sci. Eng. A, 2014, 611, p 194–200CrossRefGoogle Scholar
  44. 44.
    H.B. Cui, G.M. Xie, Z.A. Luo, J. Ma, G.D. Wang, and R.D.K. Misra, The Microstructural Evolution and Impact Toughness of Nugget Zone in Friction Stir Welded X100 Pipeline Steel, J. Alloy. Compd., 2016, 681(Supplement C), p 426–433CrossRefGoogle Scholar
  45. 45.
    L. Xinbo, Z. Fubao, F. Jianhua, and Z. Zhiliang, Research on the Flow Stress Characteristics of AISI, 1006 and AISI, 5140 in the Temperature Range of Warm Forging by Means of Thermo-mechanical Experiments, J. Mater. Process. Technol., 2002, 122(1), p 38–44CrossRefGoogle Scholar
  46. 46.
    S.H. Avner, Introduction to Physical Metallurgy, Mcgraw Hill, New York, 1974Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Vasanth C. Shunmugasamy
    • 1
  • Bilal Mansoor
    • 1
  • Georges Ayoub
    • 2
  • Ramsey Hamade
    • 3
  1. 1.Mechanical Engineering ProgramTexas A&M University at QatarDohaQatar
  2. 2.Department of Mechanical EngineeringUniversity of MichiganDearbornUSA
  3. 3.Department of Mechanical EngineeringAmerican University of BeirutBeirutLebanon

Personalised recommendations