Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1837–1846 | Cite as

Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn-Ca Alloy Wire for Biomaterial Application

  • Maobo Zheng
  • Guangquan Xu
  • Debao Liu
  • Yue Zhao
  • Baoqun Ning
  • Minfang Chen
Article
  • 238 Downloads

Abstract

Due to their excellent biocompatibility and biodegradability, magnesium alloy wires have attracted much attention for biomaterial applications including orthopedic K-wires and sutures in wound closure. In this study, Mg-3Zn-0.2Ca alloy wires were prepared by cold drawing combined with proper intermediate annealing process. Microstructures, texture, mechanical properties and corrosion behavior of Mg-3Zn-0.2Ca alloy wire in a simulated body fluid were investigated. The results showed that the secondary phase and average grain size of the Mg-3Zn-0.2Ca alloy were refined in comparison with the as-extruded alloy and a strong (0002)<10-10>//DD basal fiber texture system was formed after multi-pass cold drawing. After the annealing, most of the basal planes were tilted to the drawing direction (DD) by about 35°, presenting the characteristics of random texture, and the texture intensity decreased. The as-annealed wire shows good mechanical properties with the ultimate tensile strength (UTS), yield strength (YS) and elongation of 253 ± 8.5 MPa, 212 ± 11.3 MPa and 9.2 ± 0.9%, respectively. Electrochemical and hydrogen evolution measurements showed that the corrosion resistance of the Mg-3Zn-0.2Ca alloy wire was improved after the annealing. The immersion test indicated that the Mg-3Zn-0.2Ca wire exhibited uniform corrosion behavior during the initial period of immersion, but then exhibited local corrosion behavior.

Keywords

cold drawing corrosion resistance mechanical properties Mg-Zn-Ca alloy wire microstructure 

Notes

Acknowledgment

The authors are grateful for the supports from the National Natural Science Foundation of China (No. 51271131), key projects supported by Tianjin Science and Technology (15ZCZDSY00920) and projects supported by Tianjin Special Commissioners in Science and Technology (16JCTPJC51300).

References

  1. 1.
    F. Witte, The History of Biodegradable Magnesium Implants: A Review, Acta Biomater., 2010, 6, p 1680–1692CrossRefGoogle Scholar
  2. 2.
    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27(9), p 1728–1734CrossRefGoogle Scholar
  3. 3.
    J. Vormann, Magnesium: Nutrition and Metabolism, Mol. Aspects Med., 2003, 24(1-3), p 27–37CrossRefGoogle Scholar
  4. 4.
    J. Vennemeyer, T. Hopkins, M. Hershcovitch, K.D. Little, M.C. Hagen, D. Minteer, D.B. Hom, K. Marra, and S.K. Pixley, Initial Observations on Using Magnesium Metal in Peripheral Nerve Repair, J. Biomater. Appl., 2015, 29(8), p 1145–1154CrossRefGoogle Scholar
  5. 5.
    J.-M. Seitz, M. Durisin, J. Goldman, and J.W. Drelich, Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review, Adv. Healthcare Mater., 2015, 4(13), p 1915–1936CrossRefGoogle Scholar
  6. 6.
    H. Wu, C. Zhao, J. Ni, S. Zhang, J. Liu, J. Yan, Y. Chen, and X. Zhang, Research of a Novel Biodegradable Surgical Staple Made of High Purity Magnesium, Bioact. Mater., 2016, 1(2), p 122–126CrossRefGoogle Scholar
  7. 7.
    J.-M. Seitz, E. Wulf, P. Freytag, D. Bormann, and F.-W. Bach, The Manufacture of Resorbable Suture Material from Magnesium, Adv. Eng. Mater., 2010, 12(11), p 1099–1105CrossRefGoogle Scholar
  8. 8.
    K. Hanada, Development of Long-Fine WE43 Wire for Biodegradable Medical Applications, Eur. Cells Mater., 2014, 28, p 33Google Scholar
  9. 9.
    J. Bai, L. Yin, Y. Lu, Y. Gan, F. Xue, C. Chu, J. Yan, K. Yan, X. Wan, and Z. Tang, Preparation, Microstructure and Degradation Performance of Biomedical Magnesium Alloy Fine Wires, Prog. Nat. Sci. Mater. Int., 2014, 24(5), p 523–530CrossRefGoogle Scholar
  10. 10.
    H.-F. Sun, C.-J. Li, and W.-B. Fang, Corrosion Behavior of Extrusion-Drawn Pure Mg Wire Immersed in Simulated Body Fluid, Trans. Nonferrous Met. Soc. China, 2011, 21(31), p s258–s261CrossRefGoogle Scholar
  11. 11.
    L. Sun, J. Bai, L. Yin, Y. Gan, F. Xue, C. Chu, J. Yan, X. Wan, H. Ding, and G. Zhou, Effect of Annealing on the Microstructures and Properties of Cold Drawn Mg Alloy Wires, Mater. Sci. Eng. A, 2015, 645, p 181–187CrossRefGoogle Scholar
  12. 12.
    S.S. EI-rahman, Neuropathology of Aluminum Toxicity in Rats (Glutamate and GABA Impairment), Pharmacol. Res., 2003, 47(3), p 189–194CrossRefGoogle Scholar
  13. 13.
    Y. Nakamura, Y. Tsumura, Y. Tonogai, T. Shibata, and Y. Ito, Differences in Behavior Among the Chlorides of Seven Rare Earth Elements Administered Intravenously to Rats, Fundam. Appl. Toxicol., 1997, 37(2), p 106–116CrossRefGoogle Scholar
  14. 14.
    L. Xu, E. Zhang, D. Yin, S. Zeng, and K. Yang, In Vitro Corrosion Behaviour of Mg Alloys in a Phosphate Buffered Solution for Bone Implant Application, J. Mater. Sci. Mater. Med., 2008, 19(3), p 1017–1025CrossRefGoogle Scholar
  15. 15.
    B. Zhang, Y. Wang, L. Geng, and C. Lu, Effects of Calcium on Texture and Mechanical Properties of Hot-Extruded Mg-Zn-Ca Alloys, Mater. Sci. Eng. A, 2012, 539(2), p 56–60CrossRefGoogle Scholar
  16. 16.
    Y. Sun, B. Zhang, Y. Wang, L. Geng, and X. Jiao, Preparation and Characterization of a New Biomedical Mg-Zn-Ca Alloy, Mater. Des., 2012, 34, p 58–64CrossRefGoogle Scholar
  17. 17.
    G. Song, A. Atrens, and D. StJohn, An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys, Jpn. J. Appl. Phys., 2016, 32(S3), p 84Google Scholar
  18. 18.
    Standard Practice for Laboratory Immersion Corrosion Testing of Metals. G 31-72, Annual Book of ASTM Standards, ASTM, Philadelphia, 2004Google Scholar
  19. 19.
    P.M. Jardim, G. Solórzano, and J.B. Vander, Sande, Second Phase Formation in Melt-Spun Mg-Ca-Zn Alloys, Mater. Sci. Eng. A, 2004, 381(1), p 196–205CrossRefGoogle Scholar
  20. 20.
    H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, and S. Farahany, Relationship Between the Corrosion Behavior and the Thermal Characteristics and Microstructure of Mg-0.5Ca-xZn Alloys, Corros. Sci., 2012, 64, p 184–197CrossRefGoogle Scholar
  21. 21.
    Y. Lu, A.R. Bradshaw, Y.L. Chiu, and I.P. Jones, Effects of Secondary Phase and Grain Size on the Corrosion of Biodegradable Mg-Zn-Ca Alloys, Mater. Sci. Eng. C, 2015, 48, p 480–486CrossRefGoogle Scholar
  22. 22.
    W.Z. Chen, W.C. Zhang, H.Y. Chao, L.X. Zhang, and E.D. Wang, Influence of Large Cold Strain on the Microstructural Evolution for a Magnesium Alloy Subjected to Multi-Pass Cold Drawing, Mater. Sci. Eng. A, 2015, 623, p 92–96CrossRefGoogle Scholar
  23. 23.
    G.K. Quainoo and S. Yannacopoulos, The Effect of Cold Work on the Precipitation kinetics of AA6111 Aluminum, J. Mater. Sci., 2004, 39(21), p 6495–6502CrossRefGoogle Scholar
  24. 24.
    L.B. Tong, M.Y. Zheng, L.R. Cheng, D.P. Zhang, S. Kamado, J. Meng, and H.J. Zhang, Influence of Deformation Rate on Microstructure, Texture and Mechanical Properties of Indirect-Extruded Mg-Zn-Ca Alloy, Mater. Charact., 2015, 104, p 66–72CrossRefGoogle Scholar
  25. 25.
    H.Y. Chao, H.F. Sun, W.Z. Chen, and E.D. Wang, Static Recrystallization Kinetics of a Heavily Cold Drawn AZ31 Magnesium Alloy Under Annealing Treatment, Mater. Charact., 2011, 62(3), p 312–320CrossRefGoogle Scholar
  26. 26.
    L.W.F. Mackenzie, B. Davis, F.J. Humphreys, and G.W. Lorimer, The Deformation, Recrystallisation and Texture of Three Magnesium Alloy Extrusions, Mater. Sci. Technol., 2013, 23(10), p 1173–1180CrossRefGoogle Scholar
  27. 27.
    Y.N. Wang and J.C. Huang, Texture Analysis in Hexagonal Materials, Mater. Chem. Phys., 2003, 81(1), p 11–26CrossRefGoogle Scholar
  28. 28.
    J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium-Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57(9), p 2739–2747CrossRefGoogle Scholar
  29. 29.
    X. Zhang, G. Yuan, J. Niu, P. Fu, and W. Ding, Microstructure, Mechanical Properties, Biocorrosion Behavior, and Cytotoxicity of As-Extruded Mg-Nd-Zn-Zr Alloy with Different Extrusion Ratios, J. Mech. Behav. Biomed. Mater., 2012, 9, p 153–162CrossRefGoogle Scholar
  30. 30.
    A. Feng and Y. Han, Mechanical and In Vitro Degradation Behavior of Ultrafine Calcium Polyphosphate Reinforced Magnesium-Alloy Composites, Mater. Des., 2011, 32(5), p 2813–2820CrossRefGoogle Scholar
  31. 31.
    M.J. Robinson, Mathematical Modeling of Exfoliation Corrosion in High Strength Aluminum Alloys, Corros. Sci., 1982, 22(8), p 775-790CrossRefGoogle Scholar
  32. 32.
    G. Ben Hamu, D. Eliezer, and L. Wagner, The Relation Between Severe Plastic Deformation Microstructure and Corrosion Behavior of AZ31 Magnesium Alloy, J. Alloys Compd., 2009, 468(1-2), p 222–229CrossRefGoogle Scholar
  33. 33.
    N.N. Aung and W. Zhou, Effect of Grain Size and Twins on Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52(2), p 589–594CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, C. Yan, F. Wang, and W. Li, Electrochemical Behavior of Anodized Mg Alloy AZ91D in Chloride Containing Aqueous Solution, Corros. Sci., 2005, 47(11), p 2816–2831CrossRefGoogle Scholar
  35. 35.
    Y. Xin, T. Hu, and P.K. Chu, In Vitro Studies of Biomedical Magnesium Alloys in a Simulated Physiological Environment: A Review, Acta Biomater., 2011, 7(4), p 1452–1459CrossRefGoogle Scholar
  36. 36.
    W.D. Mueller, M.F. de Mele, M.L. Nascimento, and M. Zeddies, Degradation of Magnesium and Its Alloys: Dependence on the Composition of the Synthetic Biological Media, J. Biomed. Mater. Res., Part A, 2009, 90(2), p 487–495CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Maobo Zheng
    • 1
  • Guangquan Xu
    • 1
  • Debao Liu
    • 1
  • Yue Zhao
    • 1
  • Baoqun Ning
    • 2
  • Minfang Chen
    • 3
  1. 1.School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  2. 2.National Demonstration Center for Experimental Function Materials EducationTianjin University of TechnologyTianjinChina
  3. 3.Tianjin Key Laboratory for Photoelectric Materials and DevicesTianjin University of TechnologyTianjinChina

Personalised recommendations