Effect of Hot Deformation on Texture and Microstructure in Fe-Mn Austenitic Steel During Compression Loading

  • M. Eskandari
  • M. A. Mohtadi-Bonab
  • A. Zarei-Hanzaki
  • S. M. Fatemi


Hot compression tests of a new high-Mn austenitic steel were carried out at deformation temperatures of 700, 800, 900, and 1000 °C under strain rate of 0.01 s−1. The hot deformation behavior was investigated by the analyses of flow curves, texture, and deformed microstructures. Microstructures of the deformed specimens and macrotexture were examined using electron backscatter diffraction and x-ray diffraction methods, respectively. The results showed that the flow stress depended strongly on the deformation temperature and decreased by increasing deformation temperature. The microstructural evidence indicated that the dynamic recrystallization (DRX) process of experimental steel was initiated at 800 °C with necklace structure. The volume fraction of DRX grains was considerably increased by increasing deformation temperature to 1000 °C. Texture of the DRX grains tended to become a weak texture and was associated with the formation of Goss and R-Cube components. Meanwhile, martensitic transformation was detected in the hot-deformed austenite. The martensitic transformation was the most difficult in the DRX grains because of the effect of small grain size. The tendency of transformation was decreased after compression at 1000 °C.


EBSD recrystallization steel texture 



M. Eskandari is grateful to Professor Jerzy Szpunar for financial support to conduct this research.


  1. 1.
    M. Eskandari, A. Zarei-Hanzaki, M.A. Mohtadi-Bonab, Y. Onuki, R. Basu, A. Asghari, and J.A. Szpunar, Grain-Orientation-Dependent of γ–ε–α′ Transformation and Twinning in a Super-High-Strength, High Ductility Austenitic Mn-Steel, Mater. Sci. Eng., A, 2016, 674, p 514CrossRefGoogle Scholar
  2. 2.
    O. Grassel, L. Kruger, G. Frommeyer, and L.W. Meyer, High Strength Fe-Mn-(Al, Si)TRIP/TWIP Steels Developments-Properties-Application, Int. J. Plast, 2000, 16, p 1391CrossRefGoogle Scholar
  3. 3.
    O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141CrossRefGoogle Scholar
  4. 4.
    H.K.D.H. Bhadeshia, Twinning-Induced Plasticity Steels, Scr. Mater., 2012, 66, p 955CrossRefGoogle Scholar
  5. 5.
    M. Eskandari, A. Zarei-Hanzaki, J.A. Szpunar, M.A. Mohtadi-Bonab, A.R. Kamali, and M. Nazarian-Samani, Microstructure Evolution and Mechanical Behavior of a New Microalloyed High Mn Austenitic Steel During Compressive Deformation, Mater. Sci. Eng., A, 2014, 615, p 424CrossRefGoogle Scholar
  6. 6.
    H.Z. Wang, P. Yang, W.M. Mao, and F.Y. Lu, Effect of Hot Deformation of Austenite on Martensitic Transformation in High Manganese Steel, J. Alloys Compd., 2013, 558, p 26CrossRefGoogle Scholar
  7. 7.
    P. Sahu, A.S. Hamada, S.G. Chowdhury, and L.P. Karjalainen, Structure and Microstructure Evolution During Martensitic Transformation in Wrought Fe-26Mn-0.14C Austenitic Steel: An Effect of Cooling Rate, J. Appl. Cryst., 2007, 40, p 354CrossRefGoogle Scholar
  8. 8.
    S.S. Ferreira, F.L. Sicupira, N.S. Cruz, D.R. Moreira, and D.B. Santos, Effect of Cooling Rate on (ε, α′) Martensite Formation in Twinning/Transformation-Induced Plasticity Fe-17Mn-0.06C Steel, Mater. Res., 2013, 16, p 6CrossRefGoogle Scholar
  9. 9.
    P. Sahu, A.S. Hamada, R.N. Ghosh, and L.P. Karjalainen, X-ray Diffraction Study on Cooling-Rate-Induced γfcc → εhcp Martensitic Transformation in Cast-Homogenized Fe-26Mn-0.14C Austenitic Steel, Metall. Mater. Trans. A, 2007, 38, p 1991CrossRefGoogle Scholar
  10. 10.
    A.S. Hamada, P. Sahu, S.G. Chowdhury, L.P. Karjalainen, J. Levoska, and T. Oittinen, Kinetics of the α’ Martensitic Transformation in Fine-Grained Fe-26Mn-0.14C Austenitic Steel, Metall. Mater. Trans. A, 2008, 39, p 462CrossRefGoogle Scholar
  11. 11.
    K.G. Mandal, N. Stanford, P. Hodgson, and J.H. Beynon, Effect of Hot Working on Dynamic Recrystallisation Study of as-Cast Austenitic Stainless Steel, Mater. Sci. Eng., A, 2012, 556, p 685CrossRefGoogle Scholar
  12. 12.
    G. Dini, A. Najafizadeh, S.M. Monir-Vaghefi, and R. Ueji, Grain Size Effect on the Martensite Formation in a High-Manganese TWIP Steel by the Rietveld Method, J. Mater. Sci. Technol., 2010, 26, p 181CrossRefGoogle Scholar
  13. 13.
    O.A. Zambrano, J. Valdés, Y. Aguilar, J.J. Coronado, S.A. Rodríguez, and R.E. Logé, Hot Deformation of a Fe-Mn-Al-C Steel Susceptible of κ-Carbide Precipitation, Mater. Sci. Eng., A, 2017, 689, p 269CrossRefGoogle Scholar
  14. 14.
    A.S. Hamada, A. Khosravifard, D. Porter, and L.P. Karjalainen, Physically Based Modeling and Characterization of Hot Deformation Behavior of Twinning-Induced Plasticity Steels Bearing Vanadium and Niobium, Mater. Sci. Eng., A, 2017, 703, p 85CrossRefGoogle Scholar
  15. 15.
    H.R. Abedi, A. Zarei Hanzaki, Z. Liu, R. Xin, N. Haghdadi, and P.D. Hodgson, Continuous Dynamic Recrystallization in Low Density Steel, Mater. Des., 2017, 114, p 55CrossRefGoogle Scholar
  16. 16.
    A.S. Hamada, L.P. Karjalainen, and M.C. Somani, The Influence of Aluminum on Hot Deformation Behavior and Tensile Properties of High-Mn TWIP Steels, Mater. Sci. Eng., A, 2007, 467, p 114CrossRefGoogle Scholar
  17. 17.
    D. Li, Y. Feng, Z. Yin, F. Shangguan, K. Wang, Q. Liu, and F. Hu, Hot Deformation Behavior of an Austenitic Fe-20Mn-3Si-3Al Transformation Induced Plasticity Steel, Mater. Des., 2012, 34, p 713CrossRefGoogle Scholar
  18. 18.
    J. Zhang, H. Di, X. Wang, Y. Cao, J. Zhang, and T. Ma, Constitutive Analysis of the Hot Deformation Behavior of Fe-23Mn-2Al-0.2C Twinning Induced Plasticity Steel in Consideration of Strain, Mater. Des., 2013, 44, p 354CrossRefGoogle Scholar
  19. 19.
    A. Khosravifard, A.S. Hamada, M.M. Moshksar, R. Ebrahimi, D.A. Porter, and L.P. Karjalainen, High Temperature Deformation Behavior of Two as-Cast High-Manganese TWIP Steels, Mater. Sci. Eng., A, 2013, 582, p 15CrossRefGoogle Scholar
  20. 20.
    D. Li, Y. Feng, S. Song, Q. Liu, Q. Bai, F. Ren, and F. Shangguan, Influences of Silicon on the Work Hardening Behavior and Hot Deformation Behavior of Fe-25 wt.%Mn-(Si, Al) TWIP Steel, J. Alloys Compd., 2015, 618, p 768CrossRefGoogle Scholar
  21. 21.
    N. Cabañas, J. Penning, N. Akdut, and B.C. De Cooman, High-Temperature Deformation Properties of Austenitic Fe-Mn Alloys, Metall. Mater. Trans. A, 2006, 37, p 3305–3315CrossRefGoogle Scholar
  22. 22.
    M. Sabet, A. Zarei-Hanzaki, and S.H. Khoddam, Dynamic Restoration Processes in High-Mn TWIP Steels, J. Eng. Mater. Technol., 2009, 131, p 51CrossRefGoogle Scholar
  23. 23.
    Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang, Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng., A, 2008, 497, p 479CrossRefGoogle Scholar
  24. 24.
    H. Jiang, J. Dong, M. Zhang, and Z. Yao, Evolution of Twins and Substructures During Low Strain Rate Hot Deformation and Contribution to Dynamic Recrystallization in Alloy 617B, Mater. Sci. Eng., A, 2016, 649, p 369CrossRefGoogle Scholar
  25. 25.
    ASTM E209, Annual Book of ASTM Standards 201001-05Google Scholar
  26. 26.
    D. Ponge and G. Gottstein, Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46, p 69CrossRefGoogle Scholar
  27. 27.
    I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP Steel, Mater. Sci. Eng., A, 2010, 527, p 3552CrossRefGoogle Scholar
  28. 28.
    L.A.I. Kestens and H. Pirgazi, Texture Formation in Metal Alloys With Cubic Crystal Structures, Mater. Sci. Technol., 2016, 32, p 1303CrossRefGoogle Scholar
  29. 29.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Ltd, Oxford, 2004Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • M. Eskandari
    • 1
    • 2
  • M. A. Mohtadi-Bonab
    • 3
  • A. Zarei-Hanzaki
    • 4
  • S. M. Fatemi
    • 5
  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringShahid Chamran University of AhvazAhvazIran
  2. 2.Steel Research Center, Faculty of EngineeringShahid Chamran University of AhvazAhvazIran
  3. 3.Department of Mechanical EngineeringUniversity of BonabBonabIran
  4. 4.Hot Deformation and Thermo-Mechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials EngineeringUniversity of TehranTehranIran
  5. 5.Faculty of Mechanical EngineeringShahid Rajaee Teacher Training UniversityTehranIran

Personalised recommendations