Advertisement

Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

  • A. K. Pramanick
  • H. Das
  • G. M. Reddy
  • M. Ghosh
  • S. Nandy
  • T. K. Pal
Article
  • 156 Downloads

Abstract

Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at − 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

Keywords

ballistic performance and mechanical properties developed coated electrode lower bainite retained austenite SMAW 

References

  1. 1.
    K. Maweja and W.E. Stumpf, Fracture and Ballistic-Induced Phase Transformation in Tempered Martensitic Low-Carbon Armour Steels, Mater. Sci. Eng. A, 2006, 432, p 158–169CrossRefGoogle Scholar
  2. 2.
    K. Maweja and W.E. Stumpf, The Design of Advanced Performance High Strength Low-Carbon Martensitic Armour Steels Part 1. Mechanical property considerations, Mater. Sci. Eng. A, 2008, 485, p 140–153CrossRefGoogle Scholar
  3. 3.
    A.K. Pramanick, H. Das, G.M. Reddy, M. Ghosh, G. Das, S. Nandy, and T.K. Pal, Development and Design of Microstructure Based Coated Electrode for Ballistic Performance of Shielded Metal Arc Welded Armour Steel Joints, Mater. Des., 2016, 103, p 52–62CrossRefGoogle Scholar
  4. 4.
    Y. Yong-keun, K. Jae-hoon, and S. Kyu-taek, Mechanical Characteristics of 9% Ni Steel Welded Joint for LNG Storage Tank at Cryogenic, Int. J. Mod. Phys., 2012, 6, p 355–360Google Scholar
  5. 5.
    M. Lord, Design and modeling of ultra-high strength steel weld deposits. Ph.D. Thesis, Materials Science and Metallurgy, University of Cambridge, Cambridge, 1999.Google Scholar
  6. 6.
    S.H. Kim, C.Y. Kang, and K.S. Bang, Weld Metal Impact Toughness of Electron Beam Welded 9% Ni Steel, J. Mater. Sci., 2001, 36, p 1197–1200CrossRefGoogle Scholar
  7. 7.
    S. Khodir, T. Shibayanagi, M. Takahashi, H. Abdel-Aleem, and K. Ikeuchi, Microstructural Evolution and Mechanical Properties of High Strength 3–9% Ni-Steel Alloys Weld Metals Produced by Electron Beam Welding, Mater. Des., 2014, 60, p 391–400CrossRefGoogle Scholar
  8. 8.
    Y. Lijun, H. Wang, Z. Zhang, J. Zhang, X. Meng, S. Huang, and Q. Bai, Effect of Mn and Ni on Microstructure and Impact Toughness of Submerged Arc Weld Metals, Trans. Tianjin Univ., 2015, 21(6), p 562–566CrossRefGoogle Scholar
  9. 9.
    S.D. Bhole, J.B. Nemadeb, L. Collins, and C. Liu, Effect of Nickel and Molybdenum Additions on Weld Metal Toughness in Submerged Arc Welded HSLA Line-Pipe Steel, J. Mater. Process. Technol., 2006, 173, p 92–100CrossRefGoogle Scholar
  10. 10.
    A.S. Tabatchikov, T.I. Tabatchikova, and A.V. Pryakhin, Effect of Nickel on the Impact Toughness of Weld Metal with a Low-Carbon Martensitic Structure, Weld. Inst., 1989, 2, p 147–149CrossRefGoogle Scholar
  11. 11.
    E. Keehan, L. Karlsson, H.O. Andren, and L.E. Svensson, New Developments with C-Mn-Ni in High-Strength Steel Weld Metals—Part B Mechanical Properties, Weld. J., 2006, 85, p 218–224Google Scholar
  12. 12.
    E. Keehan, L. Karlsson, H.O. Andren, and H.K.D.H. Bhadeshia, New Developments with C–Mn–Ni in High-Strength Steel Weld Metals—Part A Microstructure, Weld. J., 2006, 85, p 200–210Google Scholar
  13. 13.
    E. Keehan, H.O. Andren, L. Karlsson, M. Murugananth, H.K.D.H. Bhadeshia, in Sixth International Conference: Trend in Welding Research, Pine Mountain, GA, USA; 15–19 April 2002, pp. 695–700Google Scholar
  14. 14.
    B.Y. Kang, H.J. Kim, and S.K. Hwang, Effect of Mn and Ni on the Variation of the Microstructure and Mechanical Properties of Low-Carbon Weld Metals, ISIJ, 2000, 40, p 1237–1245CrossRefGoogle Scholar
  15. 15.
    Z. Zhang and R.A. Farrar, Influence of Mn and Ni on the Microstructure and Toughness of C-Mn-Ni Weld Metals, Weld. J., 1997, 76, p 183–196Google Scholar
  16. 16.
    B.D Cullity, in Quantitative Analysis: Direct Comparison Method, Elements of X-Ray Diffraction (Addison-Wesley, Reading, 1956), pp. 391–396Google Scholar
  17. 17.
    N.K. Murthy, G.D. Janaki Ram, B.S. Murty, G.M. Reddy, and T.J.P. Rao, Carbide-Free Bainitic Weld Metal: A New Concept in Welding of Armor Steels, Metall. Mater. Trans. B., 2014, 45B, p 2327–2337CrossRefGoogle Scholar
  18. 18.
    Z. Zhao, C. Liu, Y. Liu, and D.O. Northwood, A New Empirical Formula for the Bainite Upper Temperature Limit of Steel, J. Mater. Sci., 2001, 36, p 5045–5056CrossRefGoogle Scholar
  19. 19.
    W. Steven and A.G. Haynes, The Temperature of Formation of Martensite and Bainite in Low-Alloy Steel, JISI, 1956, 183, p 349–359Google Scholar
  20. 20.
    H.K.D.H. Bhadeshia and A.R. Waugh, Bainite: An Atom-Probe Study of the Incomplete Reaction Phenomenon, Acta Metall., 1982, 30, p 775–784CrossRefGoogle Scholar
  21. 21.
    Z. Ławrynowicz, Carbon Partitioning During Bainite Transformation in Low-Alloy Steels, Inż. Mater., 2002, 2, p 73–75Google Scholar
  22. 22.
    Z. Ławrynowicz and A. Barbacki, Features of Bainite Transformation in Steels, Adv. Mater. Sci., 2002, 2(1), p 5–32Google Scholar
  23. 23.
    Z. Ławrynowicz, Modelling of Microstructure and Mechanical Properties of Bainitic Steels, in Proceedings of the II Scientific Conference Materials Engineering, Gdańsk-Sobieszewo (2000), pp. 49–56Google Scholar
  24. 24.
    G.M. Evans, The Effect of Nickel on Microstructure and Properties of C-Mn all-Weld Metal Deposits, Weld. Res. Abroad, 1991, 41, p 70–83Google Scholar
  25. 25.
    D.D. Crockett, J.A. Rhone, R.F. Young, and D.C. Noernberg, Design Considerations for Submerged Arc Consumables Intended for the Manufacture of Line Pipe, Pipeline Technol., 1995, 1, p 151–162Google Scholar
  26. 26.
    A.M. Pope, J.C.G. Teixeira, and V.R. Dos Santos, The Effect of Nickel on the Mechanical Properties of High-Oxygen Underwater Wet Welds, J. Offshore Mech. Arct., 1996, 118(2), p 165–167CrossRefGoogle Scholar
  27. 27.
    T. Sourmail and V. Smanio, Low Temperature Kinetics of Bainite Formation in High Carbon Steels, Acta Mater., 2013, 61, p 2639–2639CrossRefGoogle Scholar
  28. 28.
    T. Lung, J. Drillet, A. Couturier, and C. Oliver, Detailed Study of the Transformation Mechanisms in Ferrous TRIP Aided Steels, Steel Res., 2002, 73(6 + 7), p 218–224Google Scholar
  29. 29.
    T.Z. Wozniak, Austenite Double Decomposition into Bainite in High Carbon Steels, Adv. Mater. Sci., 2005, 3, p 80–97Google Scholar
  30. 30.
    Y. Tomia, Effect of Bainitic Transformation on Microstructure of Si-Mn Steel, J. Mater. Sci., 1994, 29, p 2605–2610CrossRefGoogle Scholar
  31. 31.
    K.I. Sugimoto, T. Idia, J. Sakaguchi, and T. Kashima, Retained Austenite Characteristics and Tensile Properties in a Trip Type Bainitic Sheet Steel, ISIJ Int., 2000, 40, p 902–908CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • A. K. Pramanick
    • 1
  • H. Das
    • 2
  • G. M. Reddy
    • 3
  • M. Ghosh
    • 4
  • S. Nandy
    • 5
  • T. K. Pal
    • 6
  1. 1.Forge Technology DepartmentNational Institute of Foundry and Forge Technology (NIFFT)RanchiIndia
  2. 2.School of Mechanical EngineeringUniversity of UlsanUlsanSouth Korea
  3. 3.Defense Metallurgical Research Laboratory (DMRL)HyderabadIndia
  4. 4.National Metallurgical Laboratory (NML)JamshedpurIndia
  5. 5.Rukhmani Electrode Pvt. LtdKolkataIndia
  6. 6.Metallurgical and Material Engineering DepartmentJadavpur UniversityKolkataIndia

Personalised recommendations