Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1792–1802 | Cite as

Development of an Austenitization Kinetics Model for 22MnB5 Steel

  • M. Di Ciano
  • N. Field
  • M. A. Wells
  • K. J. Daun


This paper presents a first-order austenitization kinetics model for 22MnB5 steel, commonly used in hot forming die quenching. Model parameters are derived from constant heating rate dilatometry measurements. Vickers hardness measurements made on coupons that were quenched at intermediate stages of the process were used to verify the model, and the Ac1 and Ac3 temperatures inferred from dilatometry are consistent with correlations found in the literature. The austenitization model was extended to consider non-constant heating rates typical of industrial furnaces and again showed reasonable agreement between predictions and measurements. Finally, the model is used to predict latent heat evolution during industrial heating and is shown to be consistent with values inferred from thermocouple measurements of furnace-heated 22MnB5 coupons reported in the literature.


austenite dilatometry ferrous alloy hardness measurement phase transformation 



This research was carried out under the National Science and Engineering Research Council Automotive Partnerships Canada (NSERC-APC 447344-12). The authors would like to thank Mr. Cyrus Yao (Promatek Research Centre) and Mr. Ron Soldaat (Arcelor-Mittal) for their assistance and material support.


  1. 1.
    P.K. Mallick, Ed., Materials, Design and Manufacturing for Lightweight Vehicles, Elsevier, Amsterdam, 2010Google Scholar
  2. 2.
    J.N. Rasera, K.J. Daun, C.J. Shi, and M. D’Souza, Direct Contact Heating for Hot Forming Die Quenching, Appl. Therm. Eng., 2016, 98, p 1165–1173CrossRefGoogle Scholar
  3. 3.
    V. Ploshikhin, A. Prihodovsky, J. Kaiser, R. Bisping, et al., New Heating Technology for Furnace-Free Press Hardening Process, in Tools and Technologies for Processing Ultra-High Strength Materials, Graz, Austria, 2011Google Scholar
  4. 4.
    D.P. Datta and A.M. Gokhale, Austenitization Kinetics of Pearlite and Ferrite Aggregates in a Low Carbon Steel Containing 0.15 wt pct C, Metall. Trans. A, 1981, 12A, p 443–450CrossRefGoogle Scholar
  5. 5.
    A. Roosz, Z. Gacsi, and E.G. Fuchs, Isothermal Formation of Austenite in Eutectoid Plain Carbon Steel, Acta Metall., 1983, 31, p 509–517CrossRefGoogle Scholar
  6. 6.
    C.G. de Andrés, F.G. Caballero, C. Capdevila, and H.K.D.H. Bhadeshia, Modelling of Kinetics and Dilatometric Behavior of Non-isothermal Pearlite-to-Austenite Transformation in an Eutectoid Steel, Scr. Mater., 1998, 39, p 791–796CrossRefGoogle Scholar
  7. 7.
    F.G. Caballero, C. Capdevila, and C.G. de Andrés, Influence of Scale Parameters of Pearlite on the Kinetics of Anisothermal Pearlite-to-Austenite Transformation in a Eutectoid Steel, Scr. Mater., 2000, 42, p 1159–1165CrossRefGoogle Scholar
  8. 8.
    F.G. Caballero, C. Capdevila, and C.G. de Andrés, Modelling of Kinetics and Dilatometric Behaviour of Austenite Formation in a Low-Carbon Steel with a Ferrite Plus Pearlite Initial Microstructure, J. Mater. Sci., 2002, 37, p 3533–3540CrossRefGoogle Scholar
  9. 9.
    F.G. Caballero, C. Capdevila, and C.G. de Andrés, Analysis of Effect of Alloying Elements on Martensite Start Temperature of Steels, ISIJ Int., 2003, 43, p 726–735CrossRefGoogle Scholar
  10. 10.
    S.K. Nath, S. Ray, V.N.S. Mathur, and M.L. Kapoor, Non-isothermal Austenitisation Kinetics and Theoretical Determination of Intercritical Annealing Time for Dual-Phase Steels, ISIJ Int., 1994, 34(2), p 191–197CrossRefGoogle Scholar
  11. 11.
    C.I. Garcia and A.J. DeArdo, Formation of Austenite in 1.5 pct Mn Steels, Metall. Trans. A, 1981, 12A, p 521–530CrossRefGoogle Scholar
  12. 12.
    J.J. Yi, I.S. Kim, and H.S. Choi, Austenitization During Intercritical Annealing of an Fe–C–Si–Mn Dual-Phase Steel, Metall. Trans. A, 1985, 16A, p 1237–1245CrossRefGoogle Scholar
  13. 13.
    G.R. Speich, V.A. Demarest, and R.L. Miller, Formation of Austenite During Intercritical Annealing of Dual-Phase Steels, Metall. Trans. A, 1981, 12A, p 1419–1428CrossRefGoogle Scholar
  14. 14.
    J. Huang, W.J. Poole, and M. Militzer, Austenite Formation During Intercritical Annealing, Metall. Trans. A, 2004, 35A, p 3363–3375CrossRefGoogle Scholar
  15. 15.
    M. Kulakov, W.J. Poole, and M. Militzer, The Effect of the Initial Microstructure on Recrystallization and Austenite Formation in a DP600 Steel, Metall. Trans. A, 2013, 44A, p 3564–3576CrossRefGoogle Scholar
  16. 16.
    M. Kulakov, W.J. Poole, and M. Militzer, A Microstructure Evolution Model for Intercritical Annealing of a Low-Carbon Dual-Phase Steel, ISIJ Int., 2014, 54, p 2627–2636CrossRefGoogle Scholar
  17. 17.
    H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29, p 1702–1706CrossRefGoogle Scholar
  18. 18.
    N. Li, J. Lin, D.S. Balint, and T.A. Dean, Experimental Characterization of the Effects If Thermal Conditions on Austenite Formation for Hot Stamping of Boron Steel, J. Mater. Process. Technol., 2016, 231, p 254–264CrossRefGoogle Scholar
  19. 19.
    N. Li, J. Lin, D.S. Balint, and T.A. Dean, Modeling of Austenite Formation During Heating in Boron Steel Hot Stamping Processes, J. Mater. Process. Technol., 2016, 237, p 394–401CrossRefGoogle Scholar
  20. 20.
    A.W. Coats and J.P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature, 1964, 201, p 68–69CrossRefGoogle Scholar
  21. 21.
    A.W. Coats and J.P. Redfern, Kinetic Parameters from Thermogravimetric Data. II, J. Polym. Sci. Part B Polym. Lett., 1965, 3, p 917–920CrossRefGoogle Scholar
  22. 22.
    ASTM Standard E1097-12(2012), ASTM International, West Conshohocken, PA, 2010Google Scholar
  23. 23.
    ASTM Standard E1019-11 (2011), ASTM International, West Conshohocken, PA, 2010Google Scholar
  24. 24.
    A. Khawam and D.R. Flanagan, Solid-State Kinetic Models: Basics and Mathematical Fundamentals, J. Phys. Chem. B, 2006, 110B, p 17315–17328CrossRefGoogle Scholar
  25. 25.
    ASTM Standard A1033-10(2015), ASTM International, West Conshohocken, PA, 2010Google Scholar
  26. 26.
    H.P. Hougardy, Werkstoffkunde Stahl Band 1: Grun, Verlag Stahleisen G.m.b.H., Düsseldorf, 1984, p 229Google Scholar
  27. 27.
    O.G. Kasatkin, B.B. Vinokur, and V.L. Pilyushenko, Computational Models for Determination of the Critical Points of Steel, Metallovedenie i Termicheskaya Obrabotka Metallov, 1984, 1, p 20–22Google Scholar
  28. 28.
    J. Trzaska and L.A. Dobrzaski, Modelling of CCT Diagrams for Engineering and Constructional Steels, J. Mater. Process. Technol., 2007, 192–193, p 504–510CrossRefGoogle Scholar
  29. 29.
    B. Pawłowski, Critical Points of Hypoeutectoid Steel - Prediction of Pearlite Dissolution Finish Temperature Ac1f, J. Achiev. Mater. Manuf. Eng., 2011, 49, p 331–337Google Scholar
  30. 30.
    S. Vyazokin, Evaluation of Activation Energy of Thermally Stimulated Solid-State Reactions Under Arbitrary Variation of Temperature, J. Comput. Chem., 1997, 18, p 393–402CrossRefGoogle Scholar
  31. 31.
    K.S. Jhajj, S.R. Slezak, and K.J. Daun, Inferring the Specific Heat of an Ultra High Strength Steel During the Heating Stage of Hot Forming Die Quenching, Through Inverse Analysis, Appl. Therm. Eng., 2015, 83, p 98–107CrossRefGoogle Scholar
  32. 32.
    Lehmann, H.: Developments in the Field of Schwartz Heat Treatment Furnaces for Press Hardening Industry, in 3rd International Conference on Hot Sheet Metal Forming of High-performance Steel Proceedings, Kassel, Germany, 2011 (p 13–17)Google Scholar
  33. 33.
    M. Rappaz, Modelling of Microstructure Formation in Solidification Processes, Int. Mater. Rev., 1989, 34, p 93–124CrossRefGoogle Scholar
  34. 34.
    ArcelorMittal, Properties of Usibor® 1500 PGoogle Scholar
  35. 35.
    Stull, D.R., Prophet, H.: JANAF Thermochemical Tables. No. NSRDS-NBS-37. National Standard Reference Data System, 1971Google Scholar
  36. 36.
    G.P. Krielaart, C.M. Brakman, and S. Zwaag, Analysis of Phase Transformation in Fe–C Alloys Using Differential Scanning Calorimetry, J. Mater. Sci., 1996, 51, p 1501–1508CrossRefGoogle Scholar
  37. 37.
    Twynstra, M.G., Daun, K.J., Caron, E.F.J.R., Adam, N., Womack, D.: ASME Summer Heat Transfer Conference (Minneapolis MN, 2013)Google Scholar
  38. 38.
    Q. Lai, M. Goune, A. Perlade, T. Pardoen, P. Jacques, O. Bouaziz, and Y. Brechet, Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe–0.1 C–3.5 Mn Steel, Metall. Mater. Trans. A, 2016, 47, p 3375–3386CrossRefGoogle Scholar
  39. 39.
    J. Kučera and K. Stránský, Diffusion in Iron, Iron Solid Solutions and Steels, Mater. Sci. Eng., 1982, 52, p 1–38CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • M. Di Ciano
    • 1
  • N. Field
    • 1
  • M. A. Wells
    • 1
  • K. J. Daun
    • 1
  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations