Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1803–1811 | Cite as

Effect of Rolling Temperature on the Microstructure and Tensile Properties of 47Zr-45Ti-5Al-3V Alloy

  • Y. B. Tan
  • C. Tian
  • W. C. Liu
  • S. Xiang
  • F. Zhao
  • Y. L. Liang
Article

Abstract

The 47Zr-45Ti-5Al-3V (wt.%) alloy was solution-treated at 850 and 780 °C for 30 min and then rolled at different temperatures. The effect of rolling temperature on microstructure and tensile properties was investigated. The results showed that the microstructure contained a large amount of α phase at a rolling temperature of 600 °C. As the rolling temperature increased, the amount of α phase decreased, whereas the amount of β phase increased. When the rolling temperature was higher than 700 °C, the alloy was composed of a single β phase. The tensile properties of the alloy depended strongly on rolling temperature. The yield strength and tensile strength decreased with increasing rolling temperature, whereas the elongation increased. At a given rolling temperature, low solution treatment temperature resulted in higher strength and lower elongation than high solution treatment temperature. The fracture mode changed from cleavage fracture and quasi-cleavage fracture to dimple fracture with increasing rolling temperature.

Keywords

47-45Ti-5Al-3V alloy deformation mechanical properties microstructure rolling tensile test 

Notes

Acknowledgments

This work was supported by the Scientific Research Foundation for Introduced Talent of Guizhou University (Grant No. 201629), the Hundred-level Innovative Talents Project of Guizhou Province (Grant Nos. 20164014 and 20165654), and the Science and Technology granted by Guizhou Province for financial support (Grant No. 20146013).

References

  1. 1.
    D.G. Franklin, G.E. Lucas, A.L. Bement, Creep of Zirconium Alloys in Nuclear Reactors, ASTM STP 815, Philadelphia, 1983, p 183–201.Google Scholar
  2. 2.
    P. Rodriguez, Proceedings of Zirconium Alloys for Reactor Components (ZARC-91). Department of Atomic Energy, Bombay, India, 1991, p 46–95.Google Scholar
  3. 3.
    G. Sabol, G.R. Klip, M.G. Balfour, E. Roberts, Zirconium in the Nuclear Industry. In: Eighth International Symposium, ASTM STP 1023, Philadelphia, 1989, p 227–244.Google Scholar
  4. 4.
    Z. Trojanová, P. Lukáč, and A. Dlouhý, Hardening and Softening in Zr-Sn Polycrystals, Mater. Sci. Eng. A, 1993, 164, p 246–251CrossRefGoogle Scholar
  5. 5.
    S.L. Sass, The ω Phase in a Zr-25 at.% Ti Alloy, Acta Metall., 1969, 17, p 813–820CrossRefGoogle Scholar
  6. 6.
    J.K. Chakravartty, G.K. Dey, S. Banerjee, and Y.V.R.K. Prasad, Characterization of Hot Deformation Behaviour of Zr-2.5Nb-0.5Cu Using Processing Maps, J. Nucl. Mater., 1995, 218, p 247–255CrossRefGoogle Scholar
  7. 7.
    A.V. Dobromyslov, N.I. Taluts, N.V. Kazantseva, and E.A. Kozlov, Formation of Adiabatic Shear Bands and Instability of Plastic Flow in Zr and Zr-Nb Alloys in Spherical Stress Waves, Scr. Mater., 1999, 42, p 61–71CrossRefGoogle Scholar
  8. 8.
    T.R.G. Kutty, K. Ravi, and C. Ganguly, Studies on Hot Hardness of Zr and Its Alloys for Nuclear Reactors, J. Nucl. Mater., 1999, 265, p 91–99CrossRefGoogle Scholar
  9. 9.
    V. Nikulina, V.A. Markelov, M.M. Peregud, V.N. Voevodin, V.L. Panchenko, and G.P. Kobylyansky, Irradiation-Induced Microstructural Changes in Zr-1%Sn-1%Nb-0.4%Fe, J. Nucl. Mater., 1996, 238, p 205–210CrossRefGoogle Scholar
  10. 10.
    J.K. Chakravartty, R. Kapoor, S. Banerjee, and Y.V.R.K. Prasad, Characterization of Hot Deformation Behavior of Zr-1Nb-1Sn Alloy, J. Nucl. Mater., 2007, 362, p 75–86CrossRefGoogle Scholar
  11. 11.
    K.R. Suyalatu, N. Nomura, K. Oya, Y. Tanaka, R. Kondo, H. Doi, Y. Tsutsumi, and T. Hanawa, Microstructure and Magnetic Susceptibility of As-Cast Zr-Mo Alloys, Acta Biomater., 2010, 6, p 1033–1038CrossRefGoogle Scholar
  12. 12.
    S.X. Liang, M.Z. Ma, R. Jing, X.Y. Zhang, and R.P. Liu, Microstructure and Mechanical Properties of Hot-Rolled ZrTiAlV Alloys, Mater. Sci. Eng. A, 2012, 532, p 1–5CrossRefGoogle Scholar
  13. 13.
    S.X. Liang, M.Z. Ma, R. Jing, Y.K. Zhou, Q. Jing, and R.P. Liu, Preparation of the ZrTiAlV Alloy with Ultra-High Strength and Good Ductility, Mater. Sci. Eng. A, 2012, 539, p 42–47CrossRefGoogle Scholar
  14. 14.
    S.X. Liang, L.X. Yin, H.W. Che, R. Jing, Y.K. Zhou, M.Z. Ma, and R.P. Liu, Effects of Al Content on Structure and Mechanical Properties of Hot-Rolled ZrTiAlV Alloys, Mater. Des., 2013, 52, p 246–350CrossRefGoogle Scholar
  15. 15.
    R.E. Reed-Hill and W.D. Robertson, The Crystallographic Characteristics of Fracture in Magnesium Single Crystals, Acta Metall., 1957, 5, p 728–737CrossRefGoogle Scholar
  16. 16.
    H. Zhang, Y. Liu, J.F. Fan, H.J. Roven, W.L. Cheng, B.S. Xu, and H.B. Dong, Microstructure Evolution and Mechanical Properties of Twinned AZ31 Alloy Plates at Lower Elevated Temperature, J. Alloys Compd., 2014, 615, p 687–692CrossRefGoogle Scholar
  17. 17.
    H. Zhang, Y. Yan, J.F. Fan, W.L. Cheng, H.J. Roven, B.S. Xu, and H.B. Dong, Improved Mechanical Properties of AZ31 Magnesium Alloy Plates by Pre-rolling Followed by Warm Compression, Mater. Sci. Eng. A, 2014, 618, p 540–545CrossRefGoogle Scholar
  18. 18.
    H.C. Hsu, S.C. Wu, Y.C. Sung, and W.F. Ho, The Structure and Mechanical Properties of As-Cast Zr-Ti Alloys, J. Alloys Compd., 2009, 488, p 279–383CrossRefGoogle Scholar
  19. 19.
    S.X. Liang, L.X. Yin, X.Y. Liu, R. Jing, Y.K. Zhou, M.Z. Ma, and R.P. Liu, Effects of Annealing Treatments on Microstructure and Mechanical Properties of the Zr-45Ti-5Al-3V Alloy, Mater. Sci. Eng. A, 2013, 582, p 374–378CrossRefGoogle Scholar
  20. 20.
    J.H. Song, K.J. Hong, T.K. Ha, and H.T. Jeong, The Effect of Hot Rolling Condition on the Anisotropy of Mechanical Properties in Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2007, 449–451, p 144–148CrossRefGoogle Scholar
  21. 21.
    L.G. Huang, F.T. Kong, Y.Y. Chen, and S.L. Xiao, Microstructure and Tensile Properties of Ti-6Al-4V-0.1B Alloys of Direct Rolling in the Near β Phase Region, Mater. Sci. Eng. A, 2013, 560, p 140–147CrossRefGoogle Scholar
  22. 22.
    Y.W. Kim, J.H. Kim, S.G. Hong, and C.S. Lee, Effects of Rolling Temperature on the Microstructure and Mechanical Properties of Ti-Mo Microalloyed Hot-Rolled High Strength Steel, Mater. Sci. Eng. A, 2014, 605, p 244–252CrossRefGoogle Scholar
  23. 23.
    X.J. Jiang, X.Y. Wang, Z.H. Feng, C.Q. Xia, C.L. Tan, S.X. Liang, X.Y. Zhang, M.Z. Ma, and R.P. Liu, Effect of Rolling Temperature on Microstructure and Mechanical Properties of a TiZrAl Alloy, Mater. Sci. Eng. A, 2015, 635, p 36–42CrossRefGoogle Scholar
  24. 24.
    Y.L. Hao, Z.B. Zhang, S.J. Li, and R. Yang, Microstructure and Mechanical Behavior of a Ti-24Nb-4Zr-8Sn Alloy Processed by Warm Swaging and Warm Rolling, Acta Mater., 2012, 60, p 2169–2177CrossRefGoogle Scholar
  25. 25.
    A. Paradkar, S.V. Kamat, A.K. Gogia, and B.P. Kashyap, Effect of Al and Nb on the Trigger Stress for Stress-Induced Martensitic Transformation During Tensile Loading in Ti-Al-Nb Alloys, Mater. Sci. Eng. A, 2008, 487, p 14–19CrossRefGoogle Scholar
  26. 26.
    T.W. Duerig, J. Albrecht, D. Richter, and P. Fischer, Formation and Reversion of Stress Induced Martensite in Ti-10V-2Fe-3Al, Acta Metall., 1982, 30, p 2161–2172CrossRefGoogle Scholar
  27. 27.
    A. Paradkar and S.V. Kamat, The Effect of Strain Rate on Trigger Stress for Stress-Induced Martensitic Transformation and Yield Strength in Ti-18Al-8Nb Alloy, J. Alloys Compd., 2010, 496, p 178–182CrossRefGoogle Scholar
  28. 28.
    T. Grosdidier, Y. Combres, E. Gautier, and M.J. Philippe, Effect of Microstructure Variations on the Formation of Deformation-Induced Martensite and Associated Tensile Properties in a β Metastable Ti Alloy, Mater. Sci. Eng. A, 2000, 291, p 218–224CrossRefGoogle Scholar
  29. 29.
    L.A. Matlakhova, A.N. Matlakhov, and S.N. Monteiro, Temperature Effect on the Elastic Modulus, Internal Friction and Related Phase Transformations in Ti-Nb-2%Al Quenched Alloys, Mater. Charact., 2008, 59, p 1234–1240CrossRefGoogle Scholar
  30. 30.
    Z.T. Yu and L. Zhou, Influence of Martensitic Transformation on Mechanical Compatibility of Biomedical β Type Titanium Alloy TLM, Mater. Sci. Eng. A, 2006, 438–440, p 391–394Google Scholar
  31. 31.
    H.C. Hsu, S.C. Wu, S.K. Hsu, Y.C. Sung, and W.F. Ho, Effects of Heat Treatments on the Structure and Mechanical Properties of Zr-30Ti Alloys, Mater. Charact., 2011, 62, p 157–1563CrossRefGoogle Scholar
  32. 32.
    K.R. Suyalatu, R. Kondo, Y. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, Effects of Phase Constitution on Magnetic Susceptibility and Mechanical Properties of Zr-rich Zr-Mo Alloys, Acta Biomater., 2011, 7, p 4259–4266CrossRefGoogle Scholar
  33. 33.
    J. Málek, F. Hnilica, J. Veselý, B. Smola, S. Bartáková, and J. Vaněk, Microstructure and Mechanical Properties of Ti-35Nb-6Ta Alloy After Thermomechanical Treatment, Mater. Charact., 2012, 66, p 75–82CrossRefGoogle Scholar
  34. 34.
    G. Lütjering, Influence of Processing on Microstructure and Mechanical Properties of α + β Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 32–45CrossRefGoogle Scholar
  35. 35.
    I. Sen, S. Tamirisakandala, D.B. Miracle, and U. Ramamurty, Microstructural Effects on the Mechanical Behavior of B-Modified Ti-6Al-4V Alloys, Acta Mater., 2007, 55, p 4983–4993CrossRefGoogle Scholar
  36. 36.
    G.T. Terlinde, T.W. Duerig, and J.C. Williams, Microstructure, Tensile Deformation, and Fracture in Aged Ti-10V-2Fe-3Al, Metall. Trans. A, 1983, 14ª, p 2101–2115CrossRefGoogle Scholar
  37. 37.
    A. Dehghan-Manshadi and R.J. Dippenaar, Development of α-Phase Morphologies During Low Temperature Isothermal Heat Treatment of a Ti-5Al-5Mo-5V-3Cr Alloy, Mater. Sci. Eng. A, 2011, 528, p 1833–1839CrossRefGoogle Scholar
  38. 38.
    F.H. Froes and H.B. Bomberger, The Beta Titanium Alloys, JOM, 1985, 37, p 28–37CrossRefGoogle Scholar
  39. 39.
    A. Wadood, T. Inamura, Y. Yamabe-Mitarai, and H. Hosoda, Strengthening of β Ti-6Cr-3Sn Alloy Through β Grain Refinement, α Phase Precipitation and Resulting Effects on Shape Memory Properties, Mater. Sci. Eng. A, 2013, 559, p 829–835CrossRefGoogle Scholar
  40. 40.
    S. Emura, A. Araoka, and M. Hagiwara, B2 Grain Size Refinement and Its Effect on Room Temperature Tensile Properties of a Ti-22Al-27Nb Orthorhombic Intermetallic Alloy, Scr. Mater., 2003, 48, p 629–634CrossRefGoogle Scholar
  41. 41.
    Z.X. Du, S.L. Xiao, Y.P. Shen, J.S. Liu, J. Liu, L.J. Xu, F.T. Kong, and Y.Y. Chen, Effect of Hot Rolling and Heat Treatment on Microstructure and Tensile Properties of High Strength Beta Titanium Alloy Sheets, Mater. Sci. Eng. A, 2015, 631, p 67–74CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and EngineeringYanshan UniversityQinhuangdaoPeople’s Republic of China
  2. 2.Guizhou Key Laboratory of Materials Structure and Strength, College of Materials and MetallurgyGuizhou UniversityGuiyangPeople’s Republic of China

Personalised recommendations