Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1530–1536 | Cite as

Influence of Heat Treatments on Microstructure and Toughness of 9%Ni Steel

  • S. S. M. Tavares
  • C. R. Rodrigues
  • C. A. S. de Oliveira
  • C. B. Woyames
  • J. Dille


The 9%Ni low-carbon steel is applied to utilities and processes at temperatures as low as − 196 °C. However, the microstructural features play an important role on the mechanical properties. Notably, the cryogenic toughness and mechanical strength are strongly dependent on the final heat treatment. In this paper, the microstructure of a 9%Ni low-carbon steel was modified by different heat treatments. The hardness and cryogenic toughness were measured and correlated to microstructural features. The material shows a temper embrittlement with intergranular cracking and minimum cryogenic toughness after tempering around 400 °C. Austempering at 480 °C also produced very low toughness results. On the other hand, excellent cryogenic toughness was obtained with single tempering at 600 °C after quenching or normalizing. Even higher toughness was obtained with the double tempering at 670 °C/2 h plus 600 °C/2 h. The amount of reversed austenite and its morphology in the specimen quenched and tempered at 600 °C were shown in the paper.


Ni-alloyed steel quenching and tempering temper embrittlement 



The authors acknowledge the Brazilian research agencies CNPq, FAPERJ and CAPES.


  1. 1.
    J.-I. Jang, J.B. Ju, B.-W. Lee, D. Kwon, and W.-S. Kim, Effects of Microstructural Change on Fracture Characteristics in Coarse Grained heat Affected Zones of QLT-Processed 9%Ni Steel, Mater. Sci. Eng. A, 2004, 340, p 68CrossRefGoogle Scholar
  2. 2.
    X.J. Zhang, Microhardness Characterization in Developing High Strength, High Toughness and Superior Ballistic Resistance Low Carbon Ni Steel, Mater. Sci. Technol., 2012, 28, p 818CrossRefGoogle Scholar
  3. 3.
    Y.-H. Yang, Q.-W. Cai, D. Tang, and H.-B. Wu, Precipitation and Stability of Reversed Austenite in 9Ni Steel, Int. J. Min. Metall. Mater., 2010, 17(5), p 587CrossRefGoogle Scholar
  4. 4.
    X.-Q. Zhao, T. Pan, Q.-F. Wang, H. Su, C.-F. Yang, and Q.-X. Yang, Effect of Tempering Temperature on Microstructure and Mechanical Properties of Steel Containing Ni of 9%, J. Iron Steel Res. Int., 2011, 18(5), p 47CrossRefGoogle Scholar
  5. 5.
    J.M. Zhang, H. Li, F. Yang, O. Chi, L.K. Ji, and Y.R. Feng, Effect of Heat Treatment Process on Mechanical Properties and Microstructure of a 9% Ni Steel for Large LNG Storage Tanks, J. Mat. Eng. Perform., 2013, 24, p 3867CrossRefGoogle Scholar
  6. 6.
    S.S.M. Tavares, J.M. Pardal, G.C. de Souza, C.A.S. de Oliveira, and H.F.G. de Abreu, Influence of Tempering on Microstructure and Mechanical Properties of Ti Alloyed 13%Cr Supermartensitic Stainless Steel, Mater. Sci. Technol., 2014, 30, p 1470CrossRefGoogle Scholar
  7. 7.
    C. Gesnouin, A. Hazarabedian, P. Bruzzoni, J. Ovejero-Garcia, P. Bilmes, and C. Llorente, Effect of Post-Weld Heat Treatment on the Microstructure and Hydrogen Permeation of 13crNiMo Steels, Corros. Sci., 2000, 46, p 1633CrossRefGoogle Scholar
  8. 8.
    P.D. Bilmes, M. Solari, and C.L. Llorente, Characteristics and Effects of Austenite Resulting from Tempering of 13Cr-NiMo Martensitic Steel Weld Metals, Mater. Charac., 2001, 46, p 285CrossRefGoogle Scholar
  9. 9.
    ASTM A-333-16, Standard Specification for Seamless and Welded Steel Pipe for Low-Temperature Service and Other Applications with Required Notch Toughness, ASTM International, West Conshohocken, 2014Google Scholar
  10. 10.
    ASTM E-23-16a, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, 2016Google Scholar
  11. 11.
    H.-T. Lee, H.-G. Kim, G.-G. Kim and S.-B. Shin, A Study on the Prediction of Welding Distortion of 9% Ni Steel for the Offshore LNG Storage Tank, Proceedings of the Sixteenth (2007) International Offshore and Polar Engineering Conference, Lisbon, Portugal, July 1-6, 2007.Google Scholar
  12. 12.
    A.W. Pense, R.D. Stout, Fracture Toughness and Related Characteristics of the Cryogenic Nickel Steels, Welding Research Council Bulletin, 1975, 205 Google Scholar
  13. 13.
    K. Tsuzaki, K. Fujiwara, and T. Maki, Bainite Reaction in Fe-Ni-C Alloys, Mater. Trans. JIM, 1991, 32(8), p 667CrossRefGoogle Scholar
  14. 14.
    D.-S. Leem, Y.-D. Leem, J.H. Jun, and C.-S. Choi, Amount of Retained Austenite at Room After Reverse Transformation in a Fe-13%Cr-7%Ni-3%Si Martensitic Stainless Steel, Scr. Mater., 2001, 45, p 767CrossRefGoogle Scholar
  15. 15.
    ASTM A553-14, Standard Specification for Pressure Vessel Plates, Alloy Steel, Quenched and Tempered 7, 8 and 9% Nickel, ASTM International, West Conshohocken, 2010Google Scholar
  16. 16.
    P.R. Sreenivasan, Charpy Energy–Lateral Expansion Relations for a Wide Range of Steels, Int. J. Press. Vess. Piping., 2006, 83, p 498CrossRefGoogle Scholar
  17. 17.
    O. Furukimi and Y. Saito, The Effects of Grain Boundary Phosphorus Segregation and Heat Treatment on Toughness of 9%Ni Steel and Its Welded Joint, ISIJ Int., 1991, 30, p 390CrossRefGoogle Scholar
  18. 18.
    J.P. Materkowski and G. Krauss, Temper Martensite Embrittlement in SAE 4340 Steel, Met. Trans. A, 1979, 10, p 1643CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • S. S. M. Tavares
    • 1
    • 2
  • C. R. Rodrigues
    • 1
  • C. A. S. de Oliveira
    • 3
  • C. B. Woyames
    • 4
  • J. Dille
    • 4
  1. 1.Departamento de Engenharia MecânicaUniversidade Federal FluminenseNiteróiBrazil
  2. 2.Centro Federal de Educação Celso Sucow, Programa de Pós-Graduação em Engenharia Mecânica e Tecnologia de MateriaisRio de JaneiroBrazil
  3. 3.Departamento de Engenharia MecânicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  4. 4.Programa de Engenharia Metalúrgica e de MateriaisUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations