Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1957–1961 | Cite as

Effect of Thermal Aging and Test Temperatures on Fracture Toughness of SS 316(N) Welds

  • B. Shashank Dutt
  • M. Nani Babu
  • G. Shanthi
  • A. Moitra
  • G. Sasikala
Article

Abstract

The effect of thermal aging and test temperatures on fracture toughness (J0.2) of SS 316(N) weld material has been studied based on J-R curve evaluations. The aging of the welds was carried out at temperatures 370, 475 and 550 °C and for durations varying from 1000 to 20,000 h. The fracture toughness (J-R curve) tests were carried out at 380 and 550 °C for specimens after all aging conditions, including as-weld condition. The initiation fracture toughness (J0.2) of the SS 316(N) weld material has shown degradation after 20,000-h aging durations and is reflected in all the test temperatures and aging temperatures. The fracture toughness after different aging conditions and test temperatures, including as-weld condition, was higher than the minimum specified value for this class of welds.

Keywords

heat treatment microscopy stainless steel 

References

  1. 1.
    G. Sasikala and S.K. Ray, Influence of Ageing on the Quasistatic Fracture Toughness of an SS 316(N) Weld at Ambient and Elevated Temperatures, J. Nucl. Mater., 2011, 408(1), p 45–53CrossRefGoogle Scholar
  2. 2.
    J.M. Vitek, S.A. David, D.J. Alexander, J.R. Keiser, and R.K. Nanstad, Low Temperature Behavior of Type 308 Stainless Steel Weld Metal, Acta Metall., 1991, 39(4), p 503–516CrossRefGoogle Scholar
  3. 3.
    H. Abe and Y. Watanabe, Low-Temperature Characteristics of Type 316L Stainless Steel Welds: Dependence on Solidification Mode, Metall. Mater. Trans. A, 2008, 39(6), p 1392–1398CrossRefGoogle Scholar
  4. 4.
    W.J. Mills, Fracture Toughness of Type 304 and 316 Stainless Steels and Their Welds, Int. Mater. Rev., 1997, 42(2), p 45–82CrossRefGoogle Scholar
  5. 5.
    G. Sasikala, M.D. Mathew, K.B.S. Rao, and S.L. Mannan, Creep Deformation and Fracture Behavior of a Nitrogen-Bearing Type 316 Stainless Steel Weld Metal, J. Nucl. Mater., 1999, 273(3), p 257–264CrossRefGoogle Scholar
  6. 6.
    J.K. Sahu, U. Krupp, R.N. Ghosh, and H.J. Christ, Effect of 475 C Embrittlement on the Mechanical Properties of Duplex Stainless Steel, Mater. Sci. Eng. A, 2009, 508(1–2), p 1–14CrossRefGoogle Scholar
  7. 7.
    J.V. Tuma, B. Sustarsic, and F. Vodopivec, The Effect of Ageing Temperature and Time on the Mechanical Properties of Fe-NiCrMo Alloys with Different Contents of δ Ferrite, Nucl. Eng. Des., 2008, 238(7), p 1511–1517CrossRefGoogle Scholar
  8. 8.
    K. Chandra, V. Kain, V. Bhutani, V.S. Raja, R. Tewari, G.K. Dey, and J.K. Chakravartty, Low Temperature Thermal Ageing of Austenitic Stainless Steel Welds: Kinetics and Effects on Mechanical Properties, Mater. Sci. Eng. A, 2012, 534, p 163–175CrossRefGoogle Scholar
  9. 9.
    S.A. David, J.M. Vitek, and D.J. Alexander, Embrittlement of Austenitic Stainless Steel Welds, J. Nondestruct. Eval., 1996, 15(3–4), p 129–136CrossRefGoogle Scholar
  10. 10.
    I.J. O’Donnel, H. Huthman, and A.A. Tavassoli, The Fracture Toughness Behavior of Austenitic Steels and Weld Metal Including the Effects of Thermal Ageing and Irradiation, Int. J. Pres. Vessels Pip., 1996, 65(3), p 209–220CrossRefGoogle Scholar
  11. 11.
    B.S. Dutt, G. Sasikala, G. Shanthi, S. Venugopal, M.N. Babu, P.K. Parida, and A.K. Bhaduri, Mechanical Behaviour of SS 316(N) Weld After Long Term Exposure to Service Temperatures, Procedia Eng., 2011, 10, p 2725–2730CrossRefGoogle Scholar
  12. 12.
    ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016. https://www.astm.org
  13. 13.
    ASTM E1820-17a, Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA, 2017. https://www.astm.org
  14. 14.
    B.S. Dutt, G. Shanthi, G. Sasikala, M.N. Babu, S. Venugopal, S.K. Albert, A.K. Bhaduri, and T. Jayakumar, Effect of Nitrogen Addition and Test Temperatures on Elastic-Plastic Fracture Toughness of SS 316LN, Procedia Eng., 2014, 86, p 302–307CrossRefGoogle Scholar
  15. 15.
    RCC-MR, Design and Construction Rules for Mechanical Components of Nuclear Installation, section I, A16, 2002, p 185Google Scholar
  16. 16.
    W.J. Mills, On the Relationship Between Stretch Zone Formation and the J Integral for High Strain-Hardening Materials, J. Test. Eval., 1981, 9(1), p 56–62CrossRefGoogle Scholar
  17. 17.
    W.J. Mills, Fracture Toughness of Aged Stainless Steel Primary Piping and Reactor Vessel Materials, J. Press. Vessel Technol., 1987, 109(4), p 440–448CrossRefGoogle Scholar
  18. 18.
    O.K. Chopra, Effects of thermal aging and neutron irradiation on Crack Growth Rate and Fracture Toughness of Cast Stainless Steels and Austenitic Stainless Steel Welds. https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr7185/. Accessed 10 Oct 2017
  19. 19.
    A.A.F. Tavassoli, 16–8–2 Weld Metal Design Data for 316L(N) Steel, Fusion Eng. Des., 2008, 83(10–12), p 1467–1470CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • B. Shashank Dutt
    • 1
  • M. Nani Babu
    • 1
  • G. Shanthi
    • 1
  • A. Moitra
    • 1
  • G. Sasikala
    • 1
  1. 1.Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations