Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 4, pp 1654–1663 | Cite as

Hydrogen Embrittlement Susceptibility and Safety Control of Reheated CGHAZ in X80 Welded Pipeline

  • Qiushi Deng
  • Weimin Zhao
  • Wei Jiang
  • Timing Zhang
  • Tingting Li
  • Yujiao Zhao
Article

Abstract

Coarse-grained heat-affected zone (CGHAZ) exhibits the highest hydrogen embrittlement (HE) susceptibility, which changes under the influence of thermal cycle. In this study, slow strain rate tension (SSRT) tests were conducted to investigate the HE susceptibility of reheated CGHAZs and the critical hydrogen pressure for fracture failure. Results show that intercritically reheated CGHAZ (ICCGHAZ) possesses the lowest HE resistance. Analyses of HE index and fracture indicate that the critical hydrogen pressure is 3.5 MPa. Microstructure analysis reveals that HE susceptibility is associated with multiple factors, such as phase composition, grain coarsening, HAB density, and MA constituent. Blocky necklace-like MA constituent along prior austenite boundaries plays a predominant role in intensifying the HE susceptibility of ICCGHAZ.

Keywords

critical pressure heat-affected zones hydrogen embrittlement MA constituent X80 

Notes

Acknowledgments

This work was financially funded by the National Natural Science Foundation of China (No. 51705535), the China Postdoctoral Science Foundation (No. 2016M602218), and the Natural Science Foundation of Shandong Province (No. ZR2017MEE005).

References

  1. 1.
    J. Bockris and T.N. Veziroglu, Estimates of the Price of Hydrogen as a Medium for Wind and Solar Sources, Int. J. Hydrog. Energy, 2007, 32, p 1605–1610CrossRefGoogle Scholar
  2. 2.
    D. Bessarabov, G. Human, A.J. Kruger, S. Chiuta, P.M. Modisha, S.P. du Preez, S.P. Oelofse, I. Vincent, J. Van Der Merwe, H.W. Langmi, J. Ren, and N.M. Musyoka, South African Hydrogen Infrastructure (HySA Infrastructure) for Fuel Cells and Energy Storage: Overview of a Projects Portfolio, Int. J. Hydrog. Energy, 2016, 42, p 13568–13588CrossRefGoogle Scholar
  3. 3.
    J. Michalski, U. Bünger, F. Crotogino, S. Donadei, G.-S. Schneider, T. Pregger, K.-K. Cao, and D. Heide, Hydrogen Generation by Electrolysis and Storage in Salt Caverns: Potentials, Economics and Systems Aspects with Regard to the German Energy Transition, Int. J. Hydrog. Energy, 2017, 42, p 13427–13443CrossRefGoogle Scholar
  4. 4.
    M. Granovskii, I. Dincer, and M.A. Rosen, Greenhouse Gas Emissions Reduction by Use of Wind and Solar Energies for Hydrogen and Electricity Production: Economic Factors, Int. J. Hydrog. Energy, 2007, 32, p 927–931CrossRefGoogle Scholar
  5. 5.
    J.R. Fekete, J.W. Sowards, and R.L. AmaroL, Economic Impact of Applying High Strength Steels in Hydrogen Gas Pipelines, Int. J. Hydrog. Energy, 2015, 40, p 10547–10558CrossRefGoogle Scholar
  6. 6.
    E.V. Chatzidouros, V.J. Papazoglou, and D.I. Pantelis, Hydrogen Effect on a Low Carbon Ferritic-Bainitic Pipeline Steel, Int. J. Hydrog. Energy, 2014, 39, p 18498–18505CrossRefGoogle Scholar
  7. 7.
    I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, and G. Odemer, Hydrogen Embrittlement Susceptibility of a High Strength Steel X80, Mater. Sci. Eng., A, 2010, 527, p 7252–7260CrossRefGoogle Scholar
  8. 8.
    B. Meng, C. Gu, L. Zhang, C. Zhou, X. Li, Y. Zhao, J. Zheng, X. Chen, and Y. Han, Hydrogen Effects on X80 Pipeline Steel in High-pressure Natural Gas/Hydrogen Mixtures, Int. J. Hydrog. Energy, 2017, 42, p 7404–7412CrossRefGoogle Scholar
  9. 9.
    A. Alvaro, V. Olden, A. Macadre, and O.M. Akselsen, Hydrogen Embrittlement Susceptibility of a Weld Simulated X70 Heat Affected Zone under H2 Pressure, Mater. Sci. Eng., A, 2014, 597, p 29–36CrossRefGoogle Scholar
  10. 10.
    L.R.O. Costa, L.F. Lemus, and D.S. dos Santos, Hydrogen Embrittlement Susceptibility of Welded 2¼Cr–1Mo Steel Under Elastic Stress, Int. J. Hydrog. Energy, 2015, 40, p 17128–17135CrossRefGoogle Scholar
  11. 11.
    H. Wan, C. Du, Z. Liu, D. Song, and X. Li, The Effect of Hydrogen on Stress Corrosion Behavior of X65 Steel Welded Joint in Simulated Deep Sea Environment, Ocean Eng., 2016, 114, p 216–223CrossRefGoogle Scholar
  12. 12.
    F.M.F. Guedes, S. Maffi, G. Razzini, L.P. Bicelli, and J.A.C. Ponciano, Scanning Photoelectrochemical Analysis of Hydrogen Permeation on ASTM A516 Grade60 Steel Welded Joints in a H2S Containing Solution, Corros. Sci., 2003, 45, p 2129–2142CrossRefGoogle Scholar
  13. 13.
    C. Yan, C. Liu, and B. Yan, 3D Modeling of The Hydrogen Distribution in X80 Pipeline Steel Welded Joints, Comput. Mater. Sci., 2014, 83, p 158–163CrossRefGoogle Scholar
  14. 14.
    W. Zhao, T. Zhang, Y. Zhao, J. Sun, and Y. Wang, Hydrogen Permeation and Embrittlement Susceptibility of X80 Welded Joint under High-pressure Coal Gas Environment, Corros. Sci., 2016, 111, p 84–97CrossRefGoogle Scholar
  15. 15.
    W. Liu, Y. Ren, S. Zhang, S. Wang, and L. Zhang, Influence of Secondary Welding Thermal Cycle on Microstructure and Property of Coarse Grain Heat-affected Zone in an X100 Pipeline Steel, Trans. Mater. Treat., 2012, 33, p 99–103Google Scholar
  16. 16.
    E. Bayraktar and D. Kaplan, Mechanical and Metallurgical Investigation of Martensite-Austenite Constituents in Simulated Welding Conditions, J. Mater. Process. Technol., 2004, 153–154, p 87–92CrossRefGoogle Scholar
  17. 17.
    S. Moeinifar, A.H. Kokabi, and H.R. Madaah Hosseini, Influence of Peak Temperature during Simulation and Real Thermal Cycles on Microstructure and Fracture Properties of the Reheated Zones, Mater. Des., 2010, 31, p 2948–2955CrossRefGoogle Scholar
  18. 18.
    Z. Zhu, L. Kuzmikova, H. Li, and F. Barbaro, Effect of Inter-critically Reheating Temperature on Microstructure and Properties of Simulated Inter-critically Reheated Coarse-grained Heat Affected Zone in X70 Steel, Mater. Sci. Eng., A, 2014, 605, p 8–13CrossRefGoogle Scholar
  19. 19.
    X. Li, C. Shang, C. Han, Y. Fan, and J. Sun, Influence of Necklace-Type M-A Constituent on Impact Toughness and Fracture Mechanism in the Heat Affected Zone of X100 Pipeline Steel, Acta Metall. Sin., 2016, 52, p 1025–1035Google Scholar
  20. 20.
    N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor, and A.P. Gerlich, Influence of Martensite-Austenite (MA) on Impact Toughness of X80 Line Pipe Steels, Mater. Sci. Eng., A, 2016, 662, p 481–491CrossRefGoogle Scholar
  21. 21.
    Y.D. Han, H.Y. Jing, and L.Y. Xu, Welding Heat Input Effect on the Hydrogen Permeation in the X80 Steel Welded Joints, Mater. Chem. Phys., 2012, 132, p 216–222CrossRefGoogle Scholar
  22. 22.
    W. Zhao, Y. Zou, K. Matsuda, and Z. Zou, Corrosion Behavior of Reheated CGHAZ of X80 Pipeline Steel in H2S-containing Environments, Mater. Des., 2016, 99, p 44–56CrossRefGoogle Scholar
  23. 23.
    L.W. Wang, Z.Y. Liu, Z.Y. Cui, C.W. Du, X.H. Wang, and X.G. Li, In Situ Corrosion Characterization of Simulated Weld Heat Affected Zone on API, X80 Pipeline Steel, Corros. Sci., 2014, 85, p 401–410CrossRefGoogle Scholar
  24. 24.
    A. Oudriss, J. Creus, J. Bouhattate, C. Savall, B. Peraudeau, and X. Feaugas, The Diffusion and Trapping of Hydrogen Along the Grain Boundaries in Polycrystalline Nickel, Scr. Mater., 2012, 66, p 37–40CrossRefGoogle Scholar
  25. 25.
    X. Li, Y. Fan, X. Ma, S.V. Subramanian, and C. Shang, Influence of Martensite-Austenite Constituents formed at Different Intercritical Temperatures on Toughness, Mater. Des., 2015, 67, p 457–463CrossRefGoogle Scholar
  26. 26.
    K. Takasawa, R. Ikeda, N. Ishikawa, and R. Ishigaki, Effects of Grain Size and Dislocation Density on the Susceptibility to High-pressure Hydrogen Environment Embrittlement of High-strength Low-alloy Steels, Int. J. Hydrog. Energy, 2012, 37, p 2669–2675CrossRefGoogle Scholar
  27. 27.
    X. Li, J. Zhang, Y. Wang, S. Shen, and X. Song, Effect of Hydrogen on Tensile Properties and Fracture Behavior of PH 13-8 Mo Steel, Mater. Des., 2016, 108, p 608–617CrossRefGoogle Scholar
  28. 28.
    M.A. Arafin and J.A. Szpunar, Effect of Bainitic Microstructure on the Susceptibility of Pipeline Steels to Hydrogen Induced Cracking, Mater. Sci. Eng., A, 2011, 528, p 4927–4940CrossRefGoogle Scholar
  29. 29.
    G.T. Park, S.U. Koh, H.G. Jung, and K.Y. Kim, Effect of Microstructure on the Hydrogen Trapping Efficiency and Hydrogen Induced Cracking of Linepipe Steel, Corros. Sci., 2008, 50, p 1865–1871CrossRefGoogle Scholar
  30. 30.
    G. Wang, Y. Yan, J. Li, J. Huang, L. Qiao, and A.A. Volinsky, Microstructure Effect on Hydrogen-induced Cracking in TM210 Maraging Steel, Mater. Sci. Eng., A, 2013, 586, p 142–148CrossRefGoogle Scholar
  31. 31.
    C. Park, N. Kang, and S. Liu, Effect of Grain Size on the Resistance to Hydrogen Embrittlement of API, 2W Grade 60 Steels Using In Situ Slow-Strain-Rate Testing, Corros. Sci., 2017, 128, p 33–41CrossRefGoogle Scholar
  32. 32.
    M. Koyama, E. Akiyama, Y. Lee, D. Raabe, and Kaneaki Tsuzaki, Overview of Hydrogen Embrittlement in High-Mn Steels, Int. J. Hydrog. Energy, 2017, 42, p 12706–12723CrossRefGoogle Scholar
  33. 33.
    X. Li, C. Shang, X. Ma, B. Gault, S.V. Subramanian, and J. Sun, Elemental Distribution in the Martensite-Austenite Constituent in Intercritically Reheated Coarse-Grained Heat-affected Zone of a High-strength Pipeline Steel, Scripta Mater., 2017, 139, p 67–70CrossRefGoogle Scholar
  34. 34.
    D. Kong, Y. Wu, and D. Long, Stress Corrosion of X80 Pipeline Steel Welded Joints by Slow Strain Test in NACE H2S Solutions, J. Iron. Steel Res. Int., 2013, 20, p 40–46CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Qiushi Deng
    • 1
  • Weimin Zhao
    • 1
  • Wei Jiang
    • 1
  • Timing Zhang
    • 1
  • Tingting Li
    • 1
  • Yujiao Zhao
    • 1
  1. 1.Department of Mechanical and Electronic EngineeringChina University of PetroleumQingdaoChina

Personalised recommendations