Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks’ Solution

Abstract

Biomedical implants in the knee and hip are frequent failures because of corrosion and stress on the joints. To solve this important problem, metal implants can be coated with diamond carbon, and this coating plays a critical role in providing an increased resistance to implants toward corrosion. In this study, we have employed diamond carbon coating over Ti-6Al-4V and Ti-13Nb-13Zr alloys using hot filament chemical vapor deposition method which is well-established coating process that significantly improves the resistance toward corrosion, wears and hardness. The diamond carbon-coated Ti-13Nb-13Zr alloy showed an increased microhardness in the range of 850 HV. Electrochemical impedance spectroscopy and polarization studies in SBF solution (simulated body fluid solution) were carried out to understand the in vitro behavior of uncoated as well as coated titanium alloys. The experimental results showed that the corrosion resistance of Ti-13Nb-13Zr alloy is relatively higher when compared with diamond carbon-coated Ti-6Al-4V alloys due to the presence of β phase in the Ti-13Nb-13Zr alloy. Electrochemical impedance results showed that the diamond carbon-coated alloys behave as an ideal capacitor in the body fluid solution. Moreover, the stability in mechanical properties during the corrosion process was maintained for diamond carbon-coated titanium alloys.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    S. Kurtz, Projection of Primary and Revision Hip and Knee Arthoroplasty in Unites State from 2005 to 2030, J. Bone Jt. Surg., 2007, 89, p 780–785

    Google Scholar 

  2. 2.

    S.M. Kurtz, E. Lau, K. Ong, K. Zhao, M. Kelly, and K.J. Bozic, Future Young Patient Demand for Primary and Revision Joint Replacement: National Projections from 2010 to 2030, Clin. Orthop. Relat. Res., 2009, 467, p 2606–2612

    Article  Google Scholar 

  3. 3.

    M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopedic Implants, Prog. Mater. Sci., 2009, 54, p 397–425

    Article  Google Scholar 

  4. 4.

    M. Long and H.J. Rack, Titanium Alloys in Total Joint Replacement—A Materials Science Perspective, Biomaterials, 1998, 19, p 1621–1639

    Article  Google Scholar 

  5. 5.

    Y. Abu-Amer, I. Darwech, and J.C. Clohisy, Aseptic Loosening of Total Joint Replacements: Mechanisms Underlying Osteolysis and Potential Therapies, Arthritis Res. Ther., 2007, 9, p S6

    Article  Google Scholar 

  6. 6.

    R. Pareta, L. Yang, A. Kothari, S. Sirinrath, X. Xiao, B.W. Sheldon et al., Tailoring Nanocrystalline Diamond Coated on Titanium for Osteoblast Adhesion, J. Biomed. Mater. Res. Part A, 2010, 95, p 129–136

    Article  Google Scholar 

  7. 7.

    Y. Yan, A. Neville, and D. Dowson, Bio Tribocorrosion of Co Cr Mo Orthopedic Implant Materials—Assessing the Formation and Effect of the Biofilm, Tribol. Int., 2007, 40, p 1492–1499

    Article  Google Scholar 

  8. 8.

    R. Hauert, Tribology of Diamond-like Carbon Films: Fundamentals and Applications, ed by C. Donnet, A. Erdemir (Springer, New York, 2008) pp. 494–509

  9. 9.

    X. Liu, P.K. Chu, and C. Ding, Surface Nano-functionalization of Biomaterials, Mater. Sci. Eng., 2010, 70(3–6), p 275–302

    Article  Google Scholar 

  10. 10.

    V. Gopal, M. Chandran, and M.S. Ramachandra, Tribocorrosion and Electrochemical Behaviour of Nanocrystalline Diamond Coated Ti Based Alloys for Orthopaedic Application, Tribol. Int., 2017, 106, p 88–100

    Article  Google Scholar 

  11. 11.

    S.P. Patterson, R.H. Daffner, and R.A. Gallo, Electrochemical Corrosion of Metal Implants, AJR Am. J. Roentgenol., 2005, 184, p 1219–1222

    Article  Google Scholar 

  12. 12.

    S.R. Paital and N.B. Dahotre, Calcium Phosphate Coatings for Bio-implant Applications: Materials, Performance Factors, and Methodologies, Mater. Sci. Eng., 2009, 66, p 1–3

    Article  Google Scholar 

  13. 13.

    M. Spector, Biomaterial Failure, Orthop. Clin., 1992, 23, p 211–217

    Google Scholar 

  14. 14.

    M. Kaczmare, M.U. Jurczyk, A. Miklaszewski, A. Paszel-Jaworska et al., In Vitro Biocompatibility of Titanium After Plasma Surface Alloying with Boron, Mater. Sci. Eng. C, 2016, 69, p 1240–1247

    Article  Google Scholar 

  15. 15.

    R. Hauert, A Review of Modified DLC Coatings for Biological Applications, Diamond Relat. Mater., 2003, 12, p 583–589

    Article  Google Scholar 

  16. 16.

    A. Grill, Tribology of Diamond Like Carbon and Related Materials: An Updated Review, Surf. Coat. Technol., 1997, 94, p 507–513

    Article  Google Scholar 

  17. 17.

    P. Yang, S.C.H. Kwok, P.K. Chu, Y.X. Leng, J.Y. Chen, J. Wang, and N. Huang, Haemocompatibility of Hydrogenated Amorphous Carbon (a-C:H) Films Synthesized by Plasma Immersion Ion Implantation-Deposition, Nucl. Instrum. Methods Phys. Res. Sect. B, 2003, 206, p 721–725

    Article  Google Scholar 

  18. 18.

    L.J. Yu, X. Wang, X.H. Wang, and X.H. Liu, Heamo Compatibility of Tetrahedral Amorphous Carbon Film, Surf. Coat. Technol., 2000, 128(129), p 484–488

    Article  Google Scholar 

  19. 19.

    N. Urdin, P. Francois, M. Moret, K. Unal, J. Krumeich, B.O. Aronsson, and P. Descounts, Hemocompatible Diamond-Like Carbon (DLC) Surfaces, Eur. Cells Mater., 2003, 5, p 17–28

    Article  Google Scholar 

  20. 20.

    M.I. Jones, I.R. McColl, D.M. Grant, K.G. Parker, and T.L. Parker, Haemocompatibility of DLC and TiC–TiN Interlayers on Titanium, Diamond Relat. Mater., 1999, 8(2–5), p 457–462

    Article  Google Scholar 

  21. 21.

    S. Linder, W. Pinkowski, and M. Aepfelbacher, Adhesio Cytoskeletal Architecture and Activation Status of Primary Human Macrophages on a Diamond-Like Carbon Coated Surface, Biomaterials, 2002, 23, p 767–773

    Article  Google Scholar 

  22. 22.

    K. Al Mahmud, M. Varman, M. Kalam, H. Masjuki, H. Mobarak, and N. Zulkifli, Tribological Characteristics of Amorphous Hydrogenated (aC: H) and Tetrahedral (ta-C) Diamond-Like Carbon Coating at Different Test Temperatures in the Presence of Commercial Lubricating Oil, Surf. Coat. Technol., 2014, 245, p 133–147

    Article  Google Scholar 

  23. 23.

    M. Mohanty, T.V. Anilkumar, P.V. Mohanan, C.V. Muraleedharan, G.S. Bhuvaneshwar, F. Derangere, Y. Sampeur, and R. Suryanarayanan, Long Term Tissue Response to Titanium Coated with Diamond Like Carbon, Biomol. Eng., 2002, 19, p 125–128

    Article  Google Scholar 

  24. 24.

    D. Sheeja, B.K. Tay, and L.N. Nung, Feasibility of Diamond-Like Carbon Coatings for Orthopedic Applications, Diamond Relat. Mater., 2004, 13(1), p 184–190

    Article  Google Scholar 

  25. 25.

    S.H. Din, M.A. Shah, and N.A. Sheikh, Effect of CVD-Diamond on the Tribological and Mechanical Performance of Titanium Alloy (Ti6Al4V), Tribol. Ind., 2016, 38(4), p 530–542

    Google Scholar 

  26. 26.

    L. Mohan, P. Dillibabu, P. Kmar, and C. Anandan, Influence of Zirconium Doping on the Growth of Apatite and Corrosion Behavior of DLC-Coated Titanium Alloy Ti-13Nb-13Zr, Surf. Interface Anal., 2013, 45(11–12), p 1785–1791

    Article  Google Scholar 

  27. 27.

    V. Baranauskas, H.J. Ceragioli, A.C. Peterlevitz, and M. Fontana, Low Residual Stress Diamond Coatings on Titanium, Surf. Coat. Technol., 2005, 200, p 2343–2347

    Article  Google Scholar 

  28. 28.

    S. Ghosh, D. Choudhury, T. Roy, A.B. Mama, H.H. Masjuki, and B. Pingguan-Murphy, Tribological Investigation of Diamond Like Carbon Coated Micro-dimpled Surface Under Bovine Serum and Osteoarthritis Oriented Synovial Fluid, Sci. Technol. Adv. Mater., 2015, 16, p 3

    Google Scholar 

  29. 29.

    S. Tamilselvi, V. Raman, and N. Rajendran, Electrochemical Impedance Spectroscopic Characterization of Titanium During Alkali Treatment and Apatite Growth in Simulated Body Fluid, Electrochem. Acta, 2007, 52, p 7418–7424

    Article  Google Scholar 

  30. 30.

    T. Falcade, T.E. Shimitzhauz, O.G. dos Reisb et al., Electrodeposition of Diamond-Like Carbon Films on Titanium Alloy Using Organic Liquids: Corrosion and Wear Resistance, Appl. Surf. Sci., 2012, 263, p 18–24

    Article  Google Scholar 

  31. 31.

    T.J. Dines, D. Tither, A. Dehbi, and A. Mathews, Raman Spectra of Hard Carbon Films and Hard Carbon Films Containing Secondary Elements, Carbon, 1991, 29, p 225–231

    Article  Google Scholar 

  32. 32.

    D. Durgalakshmi and M. Chandran, Studies on Corrosion and Wear Behavior of Sub Micrometric Diamond Coated Ti Alloys, Tribol. Int., 2013, 63, p 132–140

    Article  Google Scholar 

  33. 33.

    B. Ramamoorthy, B.C. Yelldose, and Scires, An Investigation into the Adhesion Strength of Diamond Like Carbon Multilayer Coating (DLC/TiN/Ti/Cu/Ni), IIM Int., 2009, 1, p 179–194

    Article  Google Scholar 

  34. 34.

    C. Anandan and L. Mohan, Wear and Corrosion Behavior of Oxygen Implanted Biomedical Titanium Alloy Ti-13Nb-13Zr, Appl. Surf. Sci., 2013, 282, p 281–290

    Article  Google Scholar 

  35. 35.

    M. Metikos-Hukovic and R. Babic, Passivation and Corrosion Behaviours of Cobalt and Cobalt–Chromium–Molybdenum Alloy, Corros. Sci., 2007, 40, p 3570–3579

    Article  Google Scholar 

  36. 36.

    I. Milosev, T. Kosec, and H.H. Strehblow, XPS and EIS Study of the Passive Film Formed on Orthopaedic Ti-6Al-7Nb Alloy in Hank’s Physiological Solution, Electrochim. Acta, 2008, 53, p 3547–3558

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Ponnusamy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gnanavel, S., Ponnusamy, S., Mohan, L. et al. Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks’ Solution. J. of Materi Eng and Perform 27, 1635–1641 (2018). https://doi.org/10.1007/s11665-018-3250-9

Download citation

Keywords

  • corrosion
  • diamond carbon
  • electrochemical impedance
  • HFCVD
  • titanium alloys